

Mekotio analysis study

 MEKOTIO ANALYSIS STUDY 2 TLP:WHITE

TLP:WHITE

April 2021

INCIBE-CERT_MEKOTIO_ANALYSIS_STUDY_2021_v1

This publication belongs to INCIBE (National Cybersecurity Institute) and is licensed under a Creative Commons Attribution-

Non-commercial 3.0 Spain license. Therefore, this work may be copied, distributed and publicly communicated under the

following conditions:

• Acknowledgement. The content of this report can be reproduced in whole or in part by third parties, citing its origin and

making express reference to both INCIBE or INCIBE-CERT and its website: https://www.incibe.es/. Such acknowledgement

may not in any circumstances suggest that INCIBE provides support to said third party or supports the use made of its work.

• Non-Commercial Use. The original material and derivative works may be distributed, copied and displayed as long as they

are not used for commercial purposes.

For any reuse or distribution, you must make this work’s licence terms clear to others. Any of the above conditions can be

waived if you get permission from INCIBE-CERT as the copyright holder. Full text of the licence:

https://creativecommons.org/licenses/by-nc-sa/3.0/es/.

https://www.incibe.es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/

 MEKOTIO ANALYSIS STUDY 3 TLP:WHITE

TLP:WHITE

Contents
LIST OF FIGURES ... 3

LIST of TABLES .. 4

1. About this study ... 5

2. Organisation of the document .. 6

3. Introduction .. 7

4. Technical report ... 8

4.1. General information .. 8

4.2. Summary of actions ... 8
4.3. Detailed analysis .. 8
4.4. Anti-detection and anti-reverse engineering techniques 27

4.5. Persistence .. 27

5. Conclusion .. 28

Appendix 1: Indicators of Compromise (IOC) .. 29

Appendix 2: Yara rules .. 31

LIST OF FIGURES

Ilustration 1. Run directory. .. 9
Ilustration 2. The variables “x32” and “x64” with the machine code associated to each of the

architectures and call to the “MCode” function, responsible for changing the permissions of the

memory region.. 9
Ilustration 3. Content of the variable “s” observed from the AutoHotKey code. 9
Ilustration 4. Code section responsible for dynamically obtaining the necessary functions. 10
Ilustration 5. Creation of the “NamedPipe”. .. 10
Ilustration 6. Process of creating the new process and decryption of the content of the new script.

 .. 11
Ilustration 7. Writing the decrypted content in the virtual file. ... 11
Ilustration 8. Table of exports. .. 13
Ilustration 9. Result of the main function with IDR. .. 13
Ilustration 10. Form-type objects listed with the IDR. ... 14
Ilustration 11. Internal functions of the form with the IDR. ... 14
Ilustration 12. Section of code from the “FormCreate” extracted with IDA....................................... 15
Ilustration 13. Decompiled code of the function “sub_94E4E0”. .. 15
Ilustration 14. First stage of the decryption algorithm. ... 16
Ilustration 15. Second stage of the decryption algorithm. .. 17
Ilustration 16. Function visualised in IDA after decryption of the strings and the renaming of the

routines. .. 18
Ilustration 17. First stage of the “CreateForm” function.. 23
Ilustration 18. Second stage of the “CreateForm” function. ... 23
Ilustration 19. Function responsible for disabling the suggestions on the forms. 24
Ilustration 20. Creation of the POST request. .. 25
Ilustration 21. "FinancialTimer" first stage. ... 26

 MEKOTIO ANALYSIS STUDY 4 TLP:WHITE

TLP:WHITE

LIST OF TABLES

Table 1. Details of the malicious sample .. 7
Table 2. Details of the sample of malicious code ... 8
Table 3. Decrypted content of the variable “s”. .. 12

 MEKOTIO ANALYSIS STUDY 5 TLP:WHITE

TLP:WHITE

1. About this study

This study contains a detailed technical report prepared after analysing a sample of

malicious code identified on VirusTotal as belonging to the Mekotio family and whose main

purpose is to identify the actions it carries out, by performing an advanced analysis of the

sample, using the set of tools used by the team of analysts.

The actions carried out in preparing it comprise a static and dynamic analysis within a

controlled environment. It should be highlighted that the sample analysed had already been

uploaded in advance to the VirusTotal platform, which makes it published and accessible

to any analyst who has a page account on said platform.

This study is aimed in general at IT and cybersecurity professionals, researchers and

technical analysts interested in the analysis and investigation of this type of threats, as well

as at system and IT network administrators in order that they keep their machines up-to-

date and secure against this threat. It may also be of special interest to those who use

online banking services or cryptocurrencies.

Regarding the methodology followed, the reversing tasks were performed out with x64dbg,

IDA and IDR.

 MEKOTIO ANALYSIS STUDY 6 TLP:WHITE

TLP:WHITE

2. Organisation of the document

This document consists of 3.- Introduction, which sets out the threat represented by the

malware family Mekotio, to which victims it is sent, its development over time and the modus

operandi followed by cybercriminals using it.

Section 4.- Technical report then sets out results of the dynamic and static analysis of the

Mekotio sample that has been analysed, beginning with how to obtain the information that

contains the file that is going to be used, the capabilities of the malware and its actions, to

its anti-detection, anti-reverse-engineering and persistence techniques.

Finally, section 5.- Conclusion, groups the most important aspects discussed over the

course of the study.

The document also contains two appendices. Appendix 1: Indicators of Compromise (IOC)

shows an IOC rule prepared to detect this specific sample, and Appendix 2: Yara rules

shows a Yara rule created exclusively to detect samples related to this campaign.

 MEKOTIO ANALYSIS STUDY 7 TLP:WHITE

TLP:WHITE

3. Introduction

The malicious code Mekotio, also known as BestaFera, is a serious threat to all users who

use online banking services or cryptocurrencies, specifically Bitcoins, since it is a banking

Trojan that affects all versions from Windows XP to Windows 10.

Mekotio was detected for the first time in March 2018 and, since then, its code and

functionalities have developed, but without every losing their focus on the main target,

online banking.

In its early stages of development, it was especially focused on Brazilian users or customers

of banks located in Brazil, but over time they have diversified, including countries such as

Chile, Mexico, Colombia, Argentina, Spain, etc., most of them Spanish-speaking.

The attackers’ ‘modus operandi’ is mainly focused on sending fraudulent emails with the

malicious file attached with which they seek to infect the machine. In order to evade possible

detections by antivirus applications, the running is divided into various files that, in turn, are

protected with different techniques that vary according to the sample.

Once the machine is infected, there are various functionalities responsible for analysing

each of the run windows in search for Internet browsers, in order to find the browsing

address and to check whether it is within its list of those affected. In the event of a

satisfactory conclusion, another function is run that is responsible for deceiving the user to

steal from him/her the access credentials and send them to the attacker’s command and

control.

The following information has been obtained from VirusTotal, where the sample is

uploaded:

SHA256 Name

9572a6e0d50bd67c35cb70653661719c6c8034254f55e4693cfbfafb2768c59c MUQFRYIRGO.dll

Table 1. Details of the malicious sample

 MEKOTIO ANALYSIS STUDY 8 TLP:WHITE

TLP:WHITE

4. Technical report

The information obtained during the analysis of the sample is detailed below.

4.1. General information

The analysed file is a Windows library, which can be run using a loader. The sample’s

signature is as follows:

Algorithm Hash

MD5 a5e3285f76d05ae20274cff6d7084fe3

SHA1 6b215c986b7a48d80a093e44edd76008a316ccb6

SHA256 9572a6e0d50bd67c35cb70653661719c6c8034254f55e4693cfbfafb2768c59c

Table 2. Details of the sample of malicious code

To obtain more information about the files to be analysed, use the command file from Linux:

PE32+ executable (DLL) (GUI) x86-64, for MS Windows

4.2. Summary of actions

The malicious code can do the following:

 Load the DLL from an AutoHotKey script.

 Function responsible for decrypting text strings.

 Process of obtaining the operating system and architecture.

 Method responsible for acquiring the installed antivirus.

 Completion of processes associated with web browsers.

 A random string generation algorithm.

 Send information to the C&C.

 Create a proxy to redirect requests.

 Download information from the Internet to update the configuration.

 Obtain the default browser.

 Take control of the clipboard.

 Detect windows associated with browsers (Internet Explorer, Firefox, Chrome, etc.).

 Achieve persistence in the machine.

4.3. Detailed analysis

To initialise the code, it is necessary to run the only executable in the directory, which is a

legitimate file corresponding to a version of AutoHotKey. The script in plain text

(svshshots.ahk) and run thanks to the interpreter has the same name as the portable

AutoHotKey file (svshshots.exe).

 MEKOTIO ANALYSIS STUDY 9 TLP:WHITE

TLP:WHITE

Ilustration 1. Run directory.

The file “svshshots.exe” is responsible for loading “MUQFRYIRGO.dll”, which contains the

malicious functionalities. The script checks the architecture (32bits or 64bits) and, on that

basis, loads a small section written in machine code into the memory. Finally, it changes

the region’s permissions to “PAGE_EXECUTE_READWRITE” to be run later.

Ilustration 2. The variables “x32” and “x64” with the machine code associated to each of the
architectures and call to the “MCode” function, responsible for changing the permissions of the

memory region.

After finishing the change of permissions, it calls the “DllCall” function to jump to the memory

address where the code is stored for the current architecture and with the permissions

necessary to run them. The following values are also sent by parameter:

 “Ahk”: it contains the path to the portable AutoHotKey file.

 “Args”: arguments sent during the running.

 “Base”: the base address to the Kernel32.dll library.

 “&str”: the pointer to the variable containing the new AutoHotKey obfuscated in “s.

Ilustration 3. Content of the variable “s” observed from the AutoHotKey code.

 MEKOTIO ANALYSIS STUDY 10 TLP:WHITE

TLP:WHITE

 “int”.

 size: the size of the content of the variable “str”.

After extracting the content of both variables and converting it to binary, it was verified that

both architectures share the same functionality, hence only the analysis of the 64-bit

version will be shown.

The loaded code contains only one function, within it the rest of the calls to API necessary

for it to operate properly are obtained, making use of the “GetProcAddress” library.

Ilustration 4. Code section responsible for dynamically obtaining the necessary functions.

The final aim is to decipher the content of the variable “s”, contained in the script, write it in

a virtual file and use the file as a parameter for a new run from “svshshots.exe” which will

be responsible for interpreting it and loading the malicious function of the file

“MUQFRYIRGO.dll”.

To use the virtual file, the “NamedPipe” functionality is used, whose “CreateNamedPipeA”

function is responsible for creating the object with the name added by parameter:

Ilustration 5. Creation of the “NamedPipe”.

After the proper creation of the virtual file, the new process of generating AutoHotKey

continues, with the following parameters:

 “/f “

 name of the “NamedPipe”

 MEKOTIO ANALYSIS STUDY 11 TLP:WHITE

TLP:WHITE

If the process is created satisfactorily, the decryption process begins with the new script:

Ilustration 6. Process of creating the new process and decryption of the content of the new script.

Once the content is decrypted, the “ConnectNamedPipe” library is used to obtain the

“handler” heeded to be able to write the decrypted content in the virtual file:

Ilustration 7. Writing the decrypted content in the virtual file.

The new AutoHotKey code is responsible for checking whether there is already any other

instance running and, should no other instance be found, it uses the internal “DllCall”

method to call the function “EQV9HXHNF89GP775AL0YG3TNO2EFCB8E3V” of the file

“MUQFRYIRGO.dll.” Below, you can see the content loaded within the virtual file and

interpreted by the portable AutoHotKey file.

 MEKOTIO ANALYSIS STUDY 12 TLP:WHITE

TLP:WHITE

Content of the variable "s" decrypted

;-----------------------
ListLines, Off
OnlyOne()
OnlyOne(flag="") {
 if (flag="")
 {
 EnvGet, file, My_ScriptFullPath
 if RegExMatch(file, "i)\.(exe|com|scr|bat|cmd)\s*$")
 Menu, Tray, Icon, %file%
 SetWorkingDir, % RegExReplace(file, "\\[^\\]*$")
 flag:=file
 }
 DetectHiddenWindows, % (dhw:=A_DetectHiddenWindows) ? "On":"On"
 hash:=0, Ptr:=(A_PtrSize ? "UPtr":"UInt")
 Loop, Parse, flag
 hash:=(hash*31+Asc(A_LoopField))&0xFFFFFFFF
 Name:="Ahk_OnlyOne_" hash
 While Mutex:=DllCall("OpenMutex","int",0x100000,"int",0,"str",Name)
 {
 DllCall("CloseHandle", Ptr,Mutex)
 While WinExist("<<" flag ">> ahk_class AutoHotkey")
 {
 WinGet, pid, PID
 WinClose,,, 3
 IfWinExist
 {
 Process, Close, %pid%
 Process, WaitClose, %pid%, 3
 }
 }
 }
 DllCall("CreateMutex", Ptr,0, "int",0, "str",Name)
 IfEqual, A_LastError, 0xB7, ExitApp
 pid:=DllCall("GetCurrentProcessId")
 WinSetTitle, ahk_pid %pid% ahk_class AutoHotkey,, <<%flag%>>
 DetectHiddenWindows, %dhw%
}
Reload(args="") {
 global
 Loop, %0%
 args.=" """ (%A_Index%) """"
 local file
 EnvGet, file, My_ScriptFullPath
 if (file="")
 return
 if RegExMatch(file, "i)\.(exe|com|scr|bat|cmd)\s*$")
 Run, "%file%" /f %args%,, UseErrorLevel
 else
 Run, "%A_AhkPath%" /f "%file%" %args%,, UseErrorLevel
 ExitApp
}
ListLines, On
;-----------------------
#NoEnv
#NoTrayIcon
#SingleInstance off
SetWorkingDir %A_ScriptDir%
W1YVP01XDCRNY6AQB0EPPXGDNNLL7 := "MUQFRYIRGO"
DllCall(W1YVP01XDCRNY6AQB0EPPXGDNNLL7 . "\EQV9HXHNF89GP775AL0YG3TNO2EFCB8E3V")

ExitApp
#SingleInstance off

Table 3. Decrypted content of the variable “s”.

 MEKOTIO ANALYSIS STUDY 13 TLP:WHITE

TLP:WHITE

On the other hand, the files with the “vmp” and “src” extension are used by the malicious

code to achieve persistence within the machine and are not involved in any way in the

running process.

The analysis continues with the “MUQFRYIRGO.dll” file, which contains the malicious code.

The following image shows the export table containing for different functions, the last being

the main one:

Ilustration 8. Table of exports.

To begin the analysis and due to the fact it is code developed in Embarcadero Delphi, the

IDR tool (Interactive Delphi Reconstructor) will be used, which makes it possible to

interpret the internal functions of the language.

Ilustration 9. Result of the main function with IDR.

In the previous image, six instructions of “call” type can be seen; it can be seen in the

memory addresses that are called that one of them is of the type 009XXXXX and the rest

are 0072XXXX. As the analysis was being performed, it was observed that the former type

is where much of the functionality developed by the attackers resides.

In the penultimate call, it can be seen that a pointer to an object with an obfuscated name

is being passed as an argument. Using the IDR tool, it is possible to observe a redirection

to a series of form-type objects.

 MEKOTIO ANALYSIS STUDY 14 TLP:WHITE

TLP:WHITE

Ilustration 10. Form-type objects listed with the IDR.

Each of these forms is associated with series of functions, which can be viewed by

expanding the drop-down menu. The result is similar to the following:

Ilustration 11. Internal functions of the form with the IDR.

The names of the majority of the functions are obfuscated, but in some of them, at the very

end of the name, there is a word that describes their functionality. Those ending in

“Connect”, “Disconnect”, “Error” and “Read” correspond to the functions responsible for

managing the communication with the command-and-control server. Those ending in

“Timer” are, as their name suggests, Timers defined for an object in a period of time. Finally,

the function “FormCreate” responsible for running the object Form is observed.

Once the function “FormCreate”, which could be considered the program’s main code, has

been extracted, the knowledge is transferred to the IDA tool, with which the analysis will

continue.

 MEKOTIO ANALYSIS STUDY 15 TLP:WHITE

TLP:WHITE

Ilustration 12. Section of code from the “FormCreate” extracted with IDA.

In the previous image, various references are seen to text strings that appear obfuscated.

It is also observed that, after each reference to a string, the same function is referred to

using the name “sub_94E4E0”. Once inside that function, several transformations are

observed with internal Delphi methods and a call to another function:

Ilustration 13. Decompiled code of the function “sub_94E4E0”.

Inside the subroutine “sub_94E2D0” is the code responsible deciphering each character

string you provide to the function. Below, one can see the first part of the code:

 MEKOTIO ANALYSIS STUDY 16 TLP:WHITE

TLP:WHITE

Ilustration 14. First stage of the decryption algorithm.

In the previous image, it can be seen that, for each string supplied to the routine, the code

extracts the first four characters and transforms them into two variables, taking them in

hexadecimal format.

For example, if the string “73EE0CC167” were to be sent, the result would be as follows:

 Var1=0x73.

 Var2=0xEE.

It then continues with an XOR operation with the character of the key indicated by the index,

in hexadecimal, and the pair of characters of the key that were previously stored in “Var2”.

The next step that is observed is a subtraction between the result of the previous operation

and EDI, with the peculiarity that, if the result is negative, it converts it into a positive result.

Finally, it concatenates the result, updates the index and repeats the operations until it has

traversed the whole string.

 MEKOTIO ANALYSIS STUDY 17 TLP:WHITE

TLP:WHITE

Ilustration 15. Second stage of the decryption algorithm.

The result for the above example is the transformation from “73EE0CC167” to “hktg”.

Once the algorithm has been applied to each of the encrypted texts and the Delphi functions

have been renamed, the code becomes much clearer and easy to analyse.

 MEKOTIO ANALYSIS STUDY 18 TLP:WHITE

TLP:WHITE

Ilustration 16. Function visualised in IDA after decryption of the strings and the renaming of the
routines.

After decoding all the strings stored within the sample, it was possible to identify the most

relevant ones:

 MEKOTIO ANALYSIS STUDY 19 TLP:WHITE

TLP:WHITE

Encrypted string Decoding

67889C4D8B88D91FD1769A3337D9133E VBoxService.exe

71F1022AC15088A791B866E1 SbieDll.dll

EE669E47E11149EA5D8CBB1B dbghelp.dll

7CF03237D263EC072AC276F53EE61BC667E3 IsDebuggerPresent

92DD15C67EB228D87EA14587F120D4B24691A73FFF5CC7CCAF Verificando su acceso...

76FD35EA1ADB0924CC71D2708A45ED112D758ADDB01731A14282BC739C32
3069D1

Revisando plugin de
seguridad...

88EE0EC07BB610220627CFDC062ED40C2CAD4190B9EA025E84D36086B326
C21BD37191383259D6

Sistema de seguridad
desactualizado...

274F92F31B28A84DEA1AC0083FE71039F52EC00637AB86D2140232F520A04
059C1AB

Su actualización está
en curso...

42B34F83A85CFA31D6082FAD9BB95C965E87A038FF52F85B9F3833012E925
38F44ED4A86A0F9369432DE0CC70267CFB7

Descargando
actualización, espere un
momento...

E70424D60530A85983AA594AEE21C7788B93A739E0658BCE6DD16495B615D
3371132E16B84CF64B51BC0A14882B844F8588C8F88E0

Instalando nueva
actualización, espere un
momento...

A9C76088A559FC21051FC3180D2BD60535AE419E Inicio MagCallback

9A27C674AF419A5C8B88A737F520C2629C3DFF41F866953CFE45F60839955
CB9

winmgmts:\\localhost\ro
ot\cimv2

254DC450DB49A99A99B76BEC002AD9BF549EBE3E13598FC4A2E21536EE67
89DD1439E3729132F4588DB3

SELECT Caption
FROM
Win32_OperatingSyste
m

F8092EDD1CD87CBB9FA24786BD6F8A88BF0B25AB56F51F4FED6A995B9AD
46AE91AC76FDB

Control
Panel\Desktop\Window
Metrics

0F6583B251EC669999A4AE AppliedDPI

98C143D354FE62F007011E5897BF73A44A81B41B3AA24196AF29F739116C90
DB598AB81223A84C93C872A4498DAC53

\SOFTWARE\Microsoft\
Windows
NT\CurrentVersion\

51945181AB77EE303AD6075F ProductName

255D84B7649F3AFD1038E96E81B565 CurrentVersion

8EE40C3FFF339559DF18C21CD6 CurrentBuild

EB6086A85692CC6588E5568FAD669847F95090 ipconfig /flushdns

73D46CA15B9581B96CAD50F10E2ACC74C60F2DAD6FEC12B864EB5BEE1B4
C3C85FF30DB6BCBD26EE66A97BD6BEE0921DF28

netsh interface
portproxy add v4tov4
listenport=

A9FC36E41DDD7789B967953BF972 connectport=

277283B36C8CC57AAA41E678BC679B49D4 connectaddress=

7593938BF77E989B8DF3 127.0.0.1

7BDC14C9738D9950FA22C4043CD87DA4963FFD42FB5F9C35F84433C563FC
3291B0944FBA7BD31B7E

netsh interface
portproxy delete v4tov4

1C4DE2133931A142E1 \god.doc

71E1193C12174E3DEE2FDB72BC678BED4F80F324 cmd /c msiexec /i "

3C6BDD4CF33460DC0F33E67FA45CFC29CF /qn /norestart

F57CB74AFC24AC42F520CD2DC976AD51EF6D87DE SeShutdownPrivilege

2DA35F9649E3678AAB94BA0033 iexplore.exe

6BE418CB7FB317DC4FF931A5 firefox.exe

F66F81B26C8FC0BD6792B4 chrome.exe

4A82A348E21CB5B05287AF msedge.exe

1DB97CA05DE823DB1038 opera.exe

 MEKOTIO ANALYSIS STUDY 20 TLP:WHITE

TLP:WHITE

E1031224213AB757E745374E38222A310354EA518CCB76D162A65B81AE
TASKKILL /F /IM
iexplore.exe

C02037CB59F20807177AEA0274E671F84B96AD12CC0923689827DB
TASKKILL /F /IM
chrome.exe

C52F2638CD4FACABB39E8EE75EC853E65583BF0028BD60E1459C42F5
TASKKILL /F /IM
firefox.exe

7888A081A84A8ABC984BF954EF1BCE78CA012371AC2FDE7DBF19DBA94384
B91FC56FA52BC4C9B818B763C26EFA26CF081DCD0948FB2BD161B5709544
27A85C8BAE52D2

En este momento no
podemos atenderle, por
favor intente más tarde.

81E11CC06399CC72A04F8BD1163F Shell_TrayWnd

20599E533DF76DB26694F75296B86A89AE28DF7DBDEE2FA74355E90A25A74
A8BB65E963FE62A1BBA1AC5A44C98589D5A4FF357FE32E1182B7FBE70984
C9E5AFA28DA1278

Los datos ingresados
son incorrectos, por
favor intente
nuevamente.

48A543EE1E1C081EC87298CA6E984D2BF2592ABF62F51240FA2DC7659A39
094BF224DD7380DA15B5147DA041549F48E36791C71ED70021D9CD6D8AB1
5043EF14C16D83DC1C0ECAD90050EB79BC7EA43DE77EB692428EFA669E2
3A35A8CB2122CF82265

Hola, Enviamos un
código como simulación
de transacción para
validar y sincronizar su
dispositivo.

2643E4167888DD0732E955463030DF46FB658BC8A539D3CA69E8196B9F3CF
F173DDA0B43E23AFC5384BB9A409A5923DC739132AE42F128DB7BE6

Por favor, En caso de
que los datos sean los
siguientes:

629E5B83BB77DE1773954152E3163BE218BF8CC265B657FF3B97569A4092A
538E11406

Ingrese el código de
confirmación.

D52C30CD6BE2051A2DC95E89AA61954CE369CF30C119379A9D34F736
C:\WINDOWS\system3
2\hal.dll

47A141F579E80F052FDD65AE54FB7F938CC4628E9F3D3D57F4759E53C23C
DB72A7A99BC96FD054FD56F27DEA63CF5884E9055DFF6F97A94A8A888F

MusAERGfaH8SjBVKpl
ZDn31JNTb7LOioF6Uq
z4xheI0k52vXdcm9gPrt
QC

3A48E618C961F2011CC86EE61ACB628DA93131 Chrome_WidgetWin_1

EC0F28E3033991A1BC6B9ACD6BA7AB5EED599F MozillaWindowClass

314FC248F40059ED IEFrame

135AFB2ADE0548FA29C36383BA5B8CBD63EA0244ED043F8ABA1BDE16C2D
14788BE6F9A34CD7984E0729240

\Software\Microsoft\Inte
rnet Explorer\Main

E6092ACEA0B014D50717CF043DE71AC8 Use FormSuggest

3142E71BC64CF50E31DB0CB38590B06287C665E50749
FormSuggest
Passwords

F5092EE1010243F925C778DF56E37ADC4C87A1 FormSuggest PW Ask

FF69EA1BCF12BD4CFA2DCA2BC2639442E76F86C8688CB81ED771BF61F50
A2F964FF01BB65987A82DA65F8CAFC16D87B91CC51EA554D4042EA9BF6B9
54582B16389

\Software\Microsoft\Win
dows\CurrentVersion\Ex
plorer\AutoComplete

F4032EE31D26AF44EF18C80E AutoSuggest

2BAA5A8CB973E806361B0941F8 taskkill /im

3FB1729248FB28197AA081 Erase "%s"

047888E9012FAC73A38EF32ACBA8899654F03361DF If exist "%s" Goto 1

D8659846FD33945A898EA935F722C4609E3FFD43FA649B32F45FEC123F915
7FE2EE6245E973FE279DB47

winmgmts:\\localhost\ro
ot\SecurityCenter2

A0C65AE763F071C2A88588E96FF95BDA1BB772FA29A853FF0541E71EDB0C
D0

SELECT * FROM
AntiVirusProduct

6781829BA6A4E242D17AAF152CDB758482F2145AE7
MSXML2.ServerXMLHT
TP

E81FD50225C51BDD16C564FB3DEA4AE81C042BBE7CD279D5 Administrador de tareas

FE639A48E2044F91F5072BAD4F2A36D1124BE175AA Windows Task Manager

96DC1AC178B92FF21C35C1182DDA0B38F5648BD560FA24B174DD06303B83
A52FD2053DAA448F528AC9718C963AFD30D57DA929B0A04BF9097AA15288
A7E619C877A5509D429545BB69E11EB74A

Software\Microsoft\Win
dows\CurrentVersion\Ex
plorer\FileExts\.html\Us
erChoice

 MEKOTIO ANALYSIS STUDY 21 TLP:WHITE

TLP:WHITE

81E11CC06399CC72A04F8BD1163F Shell_TrayWnd

BF26C36B915FF434DD7787C371A6578CA928CF1E38924C89AD13D17CF75E
80C56D9F509F51FA3F9939EE0A1BA543

Software\Microsoft\Win
dows\CurrentVersion\R
un

A938F319093884BA9E80A0F331E00333F52E cmd.exe /c start

5EF33EF32A3255D70435EB6282BD62925585ABEB2EA059F43F84E142ED698
8CA698EBA12144C973C9E4D3ADA7FBBB0A520D976DE153AEA194BE71603
78

http://htserverths.westu
s2.cloudapp.azure.com/
?oriudfjdfij88

51F10D31E61A4825DC0FC20A39E50635C8CE61E21D sicweb.servegame.com

848D9083F7 4926

A6E84B3E253ABD51C0A08E8DE952C3B3 744-GOD3--02-02

E5120815242152F70F122745DD62EF73 ALLUSERSPROFILE

6CD616C56485C86FCBB1A2 Windows 10

E76A85B2599E22C6A297 Windows 8

9031F420C76AFB7CEE1EC905 sqlite3.dll

The following list stores all the affected banks with their encoded code, in this sample:

 MEKOTIO ANALYSIS STUDY 22 TLP:WHITE

TLP:WHITE

Coded banking institutions

68FF34EB033E85

DC0A3DEA18D70D21D0

86DC6893BA7EEB0D36E4

E27382AA6D98CE63954CF255

22B145F218DD0B3EDB0D31AE4DF524D7

61E3042CC175EB1EC46B9ACE6888BA

5AFF3FE00C2CA35A89

0056ED23C665FE3FE019

8EC470985F96CF6D90B460EA063DF113D006

3E9257FF27C31FD07EBD60F033DD10

6AE61FC5768FC47C99B364

24B24EF01C28BD7FAE598F

EC7A8DBA6887C17AAA50FA59EB1ED070B1

479CAB5BF00451E614CA7CEE0B2BD5718FC070E7174AE66C82D112

9E34C373985EE514C6769430C26D9E42E7

7CD61FD50821A051FB3DDD7FB55E91B076

70E71FCC7E89DA143DED21A046F11A3BCE0839A85A8EA23FFB5F

4881B4568BAB39F626D608B343E31239CC78

2DBA4AF913D47688A85F8DCA7AAD6289BC083E83A52A

BE14D77CAE4882BD639C41955F

DA083FEC1629A34BF42ACE0D2CCB6C9C528BA320C5063E9A

F16C88BC6384D36694B868EE37DD0B36FB599F

5582B56586A333C876AF568AA0

75DD699645F06B9C46F51AB5

065DE81637F06286BE6D9231C26A

0E45F01ECF69E81DC477AA27CD0224D6

DA7B88B66598CD6380A34C9C53F927CA7CD0

F0669F48E504

27BC48F715D2082FD40729A6

8FC4709F4DEA79B85E9C4582B36692B277

AA21D90F3AFA5D9142E90845E615C26C9DC663E9065E80CF67EF

489F5784A94F85A442EB12B64CFE

FB5A95B96780D6699C47EA6E

5EE4183AE21EB673924FFF5195

EE6DB75883B014D271AE

5C8BBA68975BF436E11FD7778EB2648FA722

1CBC48EB0327AC7192B96BE80F35E6162AB374

B928DF0835FE50E61339E86387A95185

5EF431D7728D36C46897429650F91EC267

30A64FF5142BAB4AFB3DF16486A95D

4198AF53FA3F84AA5489BB1CC66D98BB70DA

9730C9799052F60B2AC26CFC3FE012

3693A25486B929CD7EAA53F63CEA1B38F36186D90C42FD5A99CC6E81AF11

 MEKOTIO ANALYSIS STUDY 23 TLP:WHITE

TLP:WHITE

E17184B351EC6FB05289BA1C

8ACD6BA05E96C36180A250F7

3F9D5AFF23DA738CB56994CE123ADD0725AD71

D57C8BB8639235CA74AB5FE0

D10134E3092EAF4CFE3EE0629D48F928

1440F417CB79EE0CC4

DB0B3AE90324B2709D43F4

ED649D43FD24

Once the “CreateForm” function begins, it stores the encrypted strings in global variables

to be used later in the Timers. It continues obtaining the name of the machine and the path

of the system variable “ALLUSERSPROFILE”; once it has obtained it, it stores both in an

internal structure.

Ilustration 17. First stage of the “CreateForm” function.

It then continues with obtaining the operating system, with which it attempts to identify

whether a version of “Windows 10” or “Windows 8” is being used, in which case it assigns

a value of “5” to a global variable; otherwise, the variable will have a value of “1”.

Ilustration 18. Second stage of the “CreateForm” function.

It then checks for the existence of the “god.doc” file, then it eliminates the suggestions for

auto-filling the web forms; to do this, it uses the registry keys:

 MEKOTIO ANALYSIS STUDY 24 TLP:WHITE

TLP:WHITE

Ilustration 19. Function responsible for disabling the suggestions on the forms.

To continue with the flow of the program, the code attempts to stop all the processes that

coincide with any of the following names:

 iexplorer.exe.

 firefox.exe.

 msedge.exe.

 opera.exe.

Once all the matching processes have ended, a search is made to establish whether there

is a file in the “ALLUSERSPROFILE” path whose name is the current date in “MM-YYYY”

format and with a “txt” extension. If it exists, the file is sent to the command-and-control

server with a POST request.

 MEKOTIO ANALYSIS STUDY 25 TLP:WHITE

TLP:WHITE

Ilustration 20. Creation of the POST request.

If it does not exist, the file is created and all the passwords stored in the databases of the

web browsers are exported to it. Finally, it activates the Timers and ends the function

responsible for creating the main form.

Among all the Timers that have been observed previously, one of them should be
highlighted; it is identified as a “FinancialTimer”, which is responsible for stealing the bank
credentials, which is the main activity of this malicious code. To achieve this purpose, the
Timer obtains the URL address from the browser’s search bar, by accessing it through the
name of its internal class. It later convers a code-interpretable object and compares it the
previously-decrypted strings of the financial institutions. If the result is positive, it establishes
communication with the command-and-control server, sends the data and activates the rest
of the Timers so that the commands received can be interpreted.

 MEKOTIO ANALYSIS STUDY 26 TLP:WHITE

TLP:WHITE

Ilustration 21. "FinancialTimer" first stage.

There is a great variety of commands to carry out actions of various types, from uploading
and downloading a file, until the device is restarted, and even uploading forms to extract
the victim’s credentials.

Other Timers to bear in mind are:
 “StartTimer”: it creates the persistence within the infected machine.

 “TaskManagerTimer”: it closes the “task manager” when it detects a new instance.

 “WarningTimer”: it is responsible for closing any window whose title contains the

word “Warning”.

 “NetConfTimer”: it performs a DNS cache clean to ensure proper connection to the

dynamic domain. Moreover, it initiates the communication with the command server

and activates the rest of the corresponding Timers.

 “ClipboardChangedTimer”: it continuously checks the clipboard content searching

for possible Bitcoins wallets and it replaces them with ones previously stored in the

malicious code and which are under the attackers’ control:

 bc1q89el8m8shnnmepd6sny2hjy36xszpa8zdf3kmc.

 Encrypted value:

BE142113CA55BA739B9E4FB47EA35387A634F76EE96E91

3231AF4D948FF63F8546F21071BF1DD2379249ED.

 1PSgjH2JwBd7wKZ5Y6HTZmQ5XzqR7rJLmA.

 MEKOTIO ANALYSIS STUDY 27 TLP:WHITE

TLP:WHITE

 Encrypted value:

DD3ADC719657AB8E9C59D80E13CF5AF27AEB718B92DF00

68C817C66AF41FC13BC16BE8.

4.4. Anti-detection and anti-reverse engineering

techniques

During the analysis of the sample, the use of a paid tool called VMProtect, which protects

against executions in virtualised environments or in code debuggers, has been identified.

In addition, code and string encryption and obfuscation routines have been detected.

4.5. Persistence

The following location is used by the malicious code to establish persistence:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\

 MEKOTIO ANALYSIS STUDY 28 TLP:WHITE

TLP:WHITE

5. Conclusion

After analysing the file, it was possible to verify the family to which it belongs and to extract

all its text strings with which its operation is configured, as well as to make it possible to

understand the nature of its behaviour. A Yara rule and an IOC have been provided to

prevent and/or locate other samples from this family.

As with other banking Trojans, Mekotio shares features with other malware of this class,

such as the fact it has a backdoor functionality, is programmed in Delphi and uses fake pop-

up windows.

 MEKOTIO ANALYSIS STUDY 29 TLP:WHITE

TLP:WHITE

Appendix 1: Indicators of Compromise (IOC)

Below is an IOC rule prepared for detecting this specific sample:

<?xml version="1.0" encoding="us-ascii"?>

<ioc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="ff7917cd-7d2f-489e-aa03-c05500a248a7" last-

modified="2020-08-04T12:29:16" xmlns="http://schemas.mandiant.com/2010/ioc">

 <short_description>Mekotio</short_description>

 <authored_by>Incibe</authored_by>

 <authored_date>2020-07-30T22:10:56</authored_date>

 <links />

 <definition>hay

 <Indicator operator="OR" id="4e7451b1-7e75-4633-ae3c-9d14ed8bfb71">

 <IndicatorItem id="0f98a13f-43dc-4018-b361-3b3eb986a34c" condition="is">

 <Context document="FileItem" search="FileItem/Md5sum" type="mir" />

 <Content type="md5">a5e3285f76d05ae20274cff6d7084fe3</Content>

 </IndicatorItem>

 <IndicatorItem id="464564ee-6f92-4944-be9f-c25d420e1051" condition="is">

 <Context document="FileItem" search="FileItem/Sha1sum" type="mir" />

 <Content type="string">6b215c986b7a48d80a093e44edd76008a316ccb6</Content>

 </IndicatorItem>

 <IndicatorItem id="f247a4b1-2061-440d-bbe9-983c8680dbd7" condition="is">

 <Context document="FileItem" search="FileItem/Sha256sum" type="mir" />

 <Content

type="string">9572a6e0d50bd67c35cb70653661719c6c8034254f55e4693cfbfafb2768c59c</Content>

 </IndicatorItem>

 <Indicator operator="AND" id="57b45b1b-6f69-4d45-8afa-db0a5bdfe17d">

 <IndicatorItem id="9ff95df6-1600-461f-9c3d-aa9ed76d99a1" condition="contains">

 <Context document="FileItem" search="FileItem/FileExtension" type="mir" />

 <Content type="string">dll</Content>

 </IndicatorItem>

 <IndicatorItem id="96d28795-c622-42d0-9b34-7b248938e1b4" condition="contains">

 <Context document="FileItem" search="FileItem/PEInfo/Exports/ExportedFunctions/string" type="mir" />

 <Content type="string">EQV9HXHNF89GP775AL0YG3TNO2EFCB8E3V</Content>

 </IndicatorItem>

 <IndicatorItem id="54253834-ac06-447e-93e0-888260473cd0" condition="contains">

 <Context document="FileItem" search="FileItem/StringList/string" type="mir" />

 <Content

type="string">48A543EE1E1C081EC87298CA6E984D2BF2592ABF62F51240FA2DC7659A39094BF224DD7

 MEKOTIO ANALYSIS STUDY 30 TLP:WHITE

TLP:WHITE

380DA15B5147DA041549F48E36791C71ED70021D9CD6D8AB15043EF14C16D83DC1C0ECAD90050EB7

9BC7EA43DE77EB692428EFA669E23A35A8CB2122CF82265</Content>

 </IndicatorItem>

 <IndicatorItem id="f85bb008-fd17-47da-bafe-26dcbfe565fd" condition="contains">

 <Context document="FileItem" search="FileItem/StringList/string" type="mir" />

 <Content

type="string">5EF33EF32A3255D70435EB6282BD62925585ABEB2EA059F43F84E142ED6988CA698EBA1

2144C973C9E4D3ADA7FBBB0A520D976DE153AEA194BE7160378</Content>

 </IndicatorItem>

 <IndicatorItem id="8221d64b-a320-4c47-af43-5792b5fc5b65" condition="contains">

 <Context document="FileItem" search="FileItem/StringList/string" type="mir" />

 <Content type="string">51F10D31E61A4825DC0FC20A39E50635C8CE61E21D</Content>

 </IndicatorItem>

 </Indicator>

 <Indicator operator="AND" id="ad79f216-b108-41df-8ca2-e127005f9161">

 <Indicator operator="OR" id="32e122b5-7cdd-4dfb-bac7-4be2396ecc7b">

 <IndicatorItem id="cde9e415-344e-4a85-9499-8c405f6765b1" condition="contains">

 <Context document="ProcessItem" search="ProcessItem/StringList/string" type="mir" />

 <Content type="string">Hola, Enviamos un codigo como simulacion de transaccion para validar y

sincronizar su dispositivo.</Content>

 </IndicatorItem>

 <IndicatorItem id="c457dc04-b3ea-4a4c-94b9-eefca95ced88" condition="contains">

 <Context document="ProcessItem" search="ProcessItem/StringList/string" type="mir" />

 <Content type="string">http://htserverths.westus2.cloudapp.azure.com/?oriudfjdfij88</Content>

 </IndicatorItem>

 <IndicatorItem id="34070b75-5188-468c-9748-272411db37c2" condition="contains">

 <Context document="ProcessItem" search="ProcessItem/StringList/string" type="mir" />

 <Content

type="string">MusAERGfaH8SjBVKplZDn31JNTb7LOioF6Uqz4xheI0k52vXdcm9gPrtQC</Content>

 </IndicatorItem>

 <IndicatorItem id="bbae2406-dbb9-40d1-b93c-c5d546ddfcce" condition="contains">

 <Context document="ProcessItem" search="ProcessItem/StringList/string" type="mir" />

 <Content type="string">744-GOD3--02-02</Content>

 </IndicatorItem>

 </Indicator>

 </Indicator>

 </Indicator>

 </definition>

</ioc>

 MEKOTIO ANALYSIS STUDY 31 TLP:WHITE

TLP:WHITE

Appendix 2: Yara rules

The following Yara rule was created exclusively to detect samples related to this campaign.

rule MekotioDLL64: MekotioFamily

{

meta:

 description = "Mekotio DLL"

 author = "Incibe"

 version = "0.1"

strings:

 $ep = {34 37 41 31 34 31 46 35 37 39 45 38 30 46 30 35 32 46 44 44 36 35 41 45 35 34 46 42 37 46 39

33 38 43 43 34 36 32 38 45 39}

 $f1 = {35 45 46 33 33 45 46 33 32 41 33 32 35 35 44 37 30 34 33 35 45 42 36 32 38 32 42 44 36 32 39

32 35 35 38 35 41 42 45 42 32}

 $f2 = {41 36 45 38 34 42 33 45 32 35 33 41 42 44 35 31 43 30 41 30 38 45 38 44 45 39 35 32 43 33 42

33}

condition:

 $ep and $f1 and $f2

}

TLP:WHITE

TLP:WHITE

	LIST OF FIGURES
	LIST of TABLES
	1. About this study
	2. Organisation of the document
	3. Introduction
	4. Technical report
	4.1. General information
	4.2. Summary of actions
	4.3. Detailed analysis
	4.4. Anti-detection and anti-reverse engineering techniques
	4.5. Persistence

	5. Conclusion
	Appendix 1: Indicators of Compromise (IOC)
	Appendix 2: Yara rules

