

Nobelium Analysis Study

 NOBELIUM ANALYSIS STUDY 2 TLP:CLEAR

E

TLP:CLEAR

 September 2022

INCIBE-CERT_NOBELIUM_ANALYSIS_STUDY_2022_v1

This publication belongs to INCIBE (Spanish National Cybersecurity Institute) and is licensed under a Creative Commons

Attribution-Non-Commercial 3.0 Spain License. For this reason, it is permitted to copy, distribute and communicate this work

publicly under the following conditions:

• Acknowledgement. The content of this report may be reproduced in part or in full by third parties, with the appropriate

acknowledgement and making express reference to INCIBE or INCIBE-CERT and its website: https://www.incibe.es/. Under no

circumstances shall said acknowledgement imply that INCIBE supports said third party or supports the use they make of this

work.

• Non-commercial Use. The original material and the derived works may be distributed, copied and exhibited provided their use

does not have a commercial purpose.

By reusing or distributing the work, the terms of the license of this work must be made clear. Some of these conditions may not

apply if permission is obtained from INCIBE-CERT as owner of the authorship rights. Full text of the license:
https://creativecommons.org/licenses/by-nc-sa/3.0/es/.

https://www.incibe.es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/

 NOBELIUM ANALYSIS STUDY 3 TLP:CLEAR

E

TLP:CLEAR

Contents
Figures .. 3

Tables .. 4

1. About this Study ... 5

2. Document Structure ... 6

3. Introduction .. 7

4. Technical Report .. 8

4.1. Chain of infection ... 10

4.2. Analysis of the infection ... 11

5. Previous Campaigns .. 23

5.1.1. BOOMBOX ...24

5.1.2. Nativezone ..25

5.1.3. Beatdrop ...25

5.1.4. Boommic ...25

5.1.5. New Artifacts ...25

6. References .. 27

Appendix 1: Indicators of Compromise (IOC) .. 28

Appendix 2: Yara Detection Rule .. 32

FIGURES

Figure 1: Content “NV.iso” .. 8
Figure 2: Contents of file “61315171.pdf” ... 9
Figure 3: VirusTotal search for ArcoSup file .. 9
Figure 4: Execution of “NV.Ink” file .. 10
Figure 5: Additional functions in vcruntime140.dll .. 10
Figure 6: Comparison of the imports in vcruntime140.dll ... 11
Figure 7: Flow of execution of infection .. 11
Figure 8: Check of AcroSup.exe chain in the process of execution ... 12
Figure 9: Call to the function call_to_ntdll_with_bypass_hooks ... 12
Figure 10: Step of the hashed API as argument .. 13
Figure 11: Search for SSN ... 13
Figure 12: Code for the construction of the hash table .. 14
Figure 13: Construction of the hash table in execution time. ... 15
Figure 14: Obtaining the API in execution time. ... 15
Figure 15: Change of context to “main_loop” function ... 16
Figure 16: gdi32.dll library uploaded to memory in duplicate ... 16
Figure 17: Function mapping_modules_overwrittern_text_section .. 17
Figure 17: Call to function mapping_modules_overwrittern_text_section “main_loop” 17
Figure 18: Request for Dropbox access token ... 18
Figure 19: Response with access token .. 18
Figure 20: Movement of files to %APPDATA% .. 19
Figure 21: Creation of persistence in HKCU .. 19
Figure 22: POST “Upload"·request to Dropbox ... 19
Figure 23: Example of the archive structure .mp3 ... 20

 NOBELIUM ANALYSIS STUDY 4 TLP:CLEAR

E

TLP:CLEAR

Figure 24: Example of the archive structure .mp3 ... 20
Figure 25: Compilation of data to be exfiltrated ... 20
Figure 26: Encryptiopn of data via XOR ... 21
Figure 27: Packaging of information to exfiltrate .. 21
Figure 28: Request POST “Download” to Dropbox .. 21
Figure 29: POST “Download” to Dropbox Request .. 22
Figure 30: Execution of dowloaded modules ... 22
Figure 31: Entrance vectors used in Nobelium campaigns .. 23
Figure 32: Artefacts utilizados by Nobelium in campaigns (2021) ... 24
Figure 33: Artefacts used by Nobelium in campaigns (2022)[7] .. 24
Figure 34: Boombox code to contact C2 .. 25
Figure 35: Comparison table for different artifacts of Nobelium ... 26

TABLES

No se encuentran elementos de tabla de ilustraciones.

 NOBELIUM ANALYSIS STUDY 5 TLP:CLEAR

E

TLP:CLEAR

1. About this Study

This study is based on the analysis of a malware sample that will help us ascertain in detail

the tools and techniques used, and their functioning, from its propagation by email, the flow

of the complete execution of the infection, encompassing the methods of obfuscation and

persistence.

The objective of the study lies in facilitating the information necessary to identify the

characteristics of this threat itself, its behaviour and techniques used, thus allowing for

better identification and response.

The detailed technical report was created following a methodology which includes both

static analysis as well as dynamic analysis of the sample within a controlled environment.

Tools like Pestudio, Dnspy and PE-Bear have been used for the executables and text

editors like Sublime Text for the scripting files or VirtualBox, InetSim, PolarProxy, Wireshak,

IDA Pro and ProcessHacker, which have allowed us to observe the impact on a terminal

and extract its configuration and most characteristic chains from the memory, once it was

running.

What's more, a review is also conducted of the different campaigns of Nobelium, comparing

them to the sample analysed and providing different indicators of commitment and a Yara

rule.

 NOBELIUM ANALYSIS STUDY 6 TLP:CLEAR

E

TLP:CLEAR

2. Document Structure

This document consists, on the one hand of 3. Introduction, detailing the origin and

background of the malware analysed, presenting the many similarities with other samples

of malicious code related to the NOBELIUM group, mentioning their origin and historic

evolution.

Next, the 4. Technical Report section contains the results of the dynamic and static analyses
performed on the sample.

Next, the section 5. Previous compares the similarities and differences of the code analysed
with other samples from previous campaigns, based on the public information available.

Finally, section 6. References lists the references consulted throughout the analysis.

The document also has two annexes: Appendix 1: Indicators of Compromise (IOC) contains

the Indicators of Commitment (IOC) associated with Nobelium, and Appendix 2: Yara

Detection Rule details the Yara rules for the detection of malicious samples of this malware.

 NOBELIUM ANALYSIS STUDY 7 TLP:CLEAR

E

TLP:CLEAR

3. Introduction

The results contained in this report have been obtained from the analysis of malicious code

distributed by email on 26 April 2022.

The malware analysed has similarities with other samples previously linked to the Nobelium
group but at the same time presents new characteristics that show greater sophistication,
such as a downloader for which no previous analysis was found in open sources.

Nobelium is the Microsoft designation for a group of attackers which, according to the United
States Cybersecurity and Infrastructure Security Agency (CISA), forms part of the Russian
Foreign Intelligence Service (SVR).

Other security companies refer to this group as APT29, UNC2452, Silverfish, DarkHalo, or
StellarParticle. This criminal group is particularly well known for the attack on the supply
chain of SolarWinds, which came to light in 2020 [1]. Later, in January 2021, the group
changed its modus operandi, performing a massive phishing campaign [2] passing
themselves of as an American development company. The techniques, tactics and
procedures (TTPs) identified on this occasion share many similarities with the campaign
reported in 2021.

 NOBELIUM ANALYSIS STUDY 8 TLP:CLEAR

E

TLP:CLEAR

4. Technical Report

The analysis part of the email that contains a link to the HTML file housed on an external

server, which uses the HTML Smuggling technique (T1027.006)1 to conceal an ISO file

called “NV.iso”, whose hash in SHA-256 is

2931C944C166B610BDADF1A26668023DB919D6BA35B1193399081474BE4BC1F6.

Upon opening the file we find 5 documents, which are hidden except for “NV.lnk”, which

detonates the infection if executed by the user.

Figure 1: Content “NV.iso”

The files, with their respective hashes, are the following

 Name Hash SHA-256
 61315171.pdf 5FDCA439BEA2482B7DB9FDAA75C7FDF15E4014A82F570A27F09D0E551C528015

 AcroSup.exe E8E63F7CF6C25FB3B93AA55D5745393A34E2A98C5AEACBC42F1362DDF64EB0DA

 AcroSup64.dll 3AC8C22EB7C59D35FE49C20F2A0ECA06765543DFB15F455A5557AF4428066641

 NV.lnk 18E0526350E135EE76EF408BC2702F204A576102F8EA5061414D9DC63A563FE5

 Vcruntime140.dll 2028C7DEAF1C2A46F3EBBF7BBDF76781D84F9321107D65D9B9DD958E3C88EF5A

First, the file “61315171.pdf” is the bait shown the victim while the infection is launched,

purporting to be from the Ukrainian Ministry of Foreign Affairs, taking advantage of the

ongoing conflict with Russia. The document informs of the closure of the Ukrainian embassy

in the Republic of North Macedonia on 25 April 2022.

1 Obfuscated Files or Information: HTML Smuggling. https://attack.mitre.org/techniques/T1027/006/

https://attack.mitre.org/techniques/T1027/006/

 NOBELIUM ANALYSIS STUDY 9 TLP:CLEAR

E

TLP:CLEAR

Figure 2: Contents of file “61315171.pdf”

On the other hand, we also have the file AcroSup.exe which has a time stamp prior to the
others. Searching by hash in VirusTotal, we find a match for a file with no detections.

Figure 3: VirusTotal search for ArcoSup file

The real name of the file is WCChromeNativeMessagingHost.exe, a legitimate plug-in
listener by Adobe Create PDF for Chrome. The malware will use this legitimate file to upload
the malicious DLLs (AcroSup64.dll and vcruntime.dll).

 NOBELIUM ANALYSIS STUDY 10 TLP:CLEAR

E

TLP:CLEAR

4.1. Chain of infection

When the user opens the ISO file, they only find the “NV.lnk” file because the rest of the
files are hidden. Upon executing the LNK file, the AcroSup.exe execution is launched using
the command terminal.

Figure 4: Execution of “NV.Ink” file

As already noted, the file AcroSup.exe is legitimate. However, searching the legitimate
library vcruntime140.dll, those involved manage to load their malicious DLL of the same
name, which they place alongside the executable file. This technique is known as DLL Side-
Load (T1574.002)2.

The vcruntime140.dll library is a legitimate Windows DLL that allows the correct execution
of programmes written in C. Upon purchasing the original DLL which the malware
accompanies, it can be observed that some functions are different, as seen in the
comparison below:

Figure 5: Additional functions in vcruntime140.dll

The results show 216 coinciding functions and 18 additional ones. Analysing each one of
the functions, there is nothing unusual, so it looks like the DLL has no malicious logic.

2 Hijack Execution Flow: DLL Side-Loading. https://attack.mitre.org/techniques/T1574/002/

https://attack.mitre.org/techniques/T1574/002/

 NOBELIUM ANALYSIS STUDY 11 TLP:CLEAR

E

TLP:CLEAR

In the imports for the vcruntime140.dll library, which comes with the ISO file, we can see
that it contains one import more than the original.

Figure 6: Comparison of the imports in vcruntime140.dll

When the vcruntime140.dll library alongside AcroSup.exe is uploaded, AcroSup64.dll will
be loaded automatically and its DIIMain will be executed.

As described above, the flow of the infection would be as follows:

Figure 7: Flow of execution of infection

4.2. Analysis of the infection

The main DLL responsible for the communication and execution is AcroSup64.dll, which
loads on the memory via DLL Side-Loading through the DLL which serves as a proxy for
the uploading (vcruntime140.dll).

The malicious logic is not in the exported function but is found directly in the DIIMain
function. DllMain checks that the image of the binary of the process in execution called
AcroSup.exe (legitimate binary).

 NOBELIUM ANALYSIS STUDY 12 TLP:CLEAR

E

TLP:CLEAR

Figure 8: Check of AcroSup.exe chain in the process of execution

During the analysis of this sample, it is observed that it uses a technique to avoid the user's
hooks and to perform a direct invocation to syscalls or more specifically to SSNs (System
Service Numbers). These kinds of hooks are common in security software to monitor the
processes in execution and, this way, detect malicious behaviours. That is why the malware
tries to sort them to guarantee their execution.

In this case, it was possible to see that the sample has a function that implements this
bypass technique. The figure below shows a call to this function
(call_to_ntdll_with_bypass_hooks).

Figure 9: Call to the function call_to_ntdll_with_bypass_hooks

Upon entering the function, it is clear that there is a call to another function disguising the

value as an argument: 0x0B4A8D256. This value corresponds to the hash of the name of

the function of the NTDLL.dll library. The result of the call to this function will be stored in

 NOBELIUM ANALYSIS STUDY 13 TLP:CLEAR

E

TLP:CLEAR

the RAX log and corresponds to the SSN (System Service Number) which is passed to the

syscall instruction3.

Figure 10: Step of the hashed API as argument

The function shown below is that received for the hash parameter of the function. The

following image shows how it searches the SSN (System Service Number) in the table built

based on the function we have renamed GetSysCallList(). Later, in the while loop, it

compares and returns the values:

Figure 11: Search for SSN

Within the GetSysCallList() function, the table of hashes of the names of the ntdll.dll library

is built. The code can be seen below:

3 SYSCALL — Fast System Call: https://www.felixcloutier.com/x86/syscall

https://www.felixcloutier.com/x86/syscall

 NOBELIUM ANALYSIS STUDY 14 TLP:CLEAR

E

TLP:CLEAR

Figure 12: Code for the construction of the hash table

In the execution time, one can observe how, at the time when the hash table is being built,

register r11 is noting all the names of the APIs with prefix Zw:

 NOBELIUM ANALYSIS STUDY 15 TLP:CLEAR

E

TLP:CLEAR

Figure 13: Construction of the hash table in execution time.

If we observe the r8 log which is where it stores the hash calculating and log r11 which is

where it stores the API, we can see that this time the API is using the malware.

Figure 14: Obtaining the API in execution time.

Log r8 shows the value 0xB4A8D256 and we see in the lower left section the hexadecimal

view that is synchronised with log r11 as the API is ZwCreateThreadEx().

Observing the code and its behaviour, the technique implement has been identified as that

described in section 8 of the article “Bypassing User-Mode Hooks and Direct Invocation of

System Calls for Red Teams” (MDSec Research, s.f.) by cybersecurity company MDSec.

In summary, this is a means of obtaining the SSNs inside the execution time without having

the map ntdll again, with the aforementioned aims.

The analyst has found no publicly available source that mentions this technique in the recent

campaigns.

Once this action is performed, it redirects the flow of the execution to a function that is the
main lop, names here as “main_loop”. The redirection of the flow is produced suspending
the thread and changing the context of the thread to the following instruction to execute.

 NOBELIUM ANALYSIS STUDY 16 TLP:CLEAR

E

TLP:CLEAR

Figure 15: Change of context to “main_loop” function

The above image shows how it fixes the variable Context.Rip to the main_loop function and

performs a Summary to initiate the execution of the main loop.

In this main_loop() function, we observe that, as an antihook mechanism, there is a function

(mapping_modules_overwritten_text_section) that re-maps all the libraries. Below is an

example of how, in an instant, putting a breakpoint at the moment when the library is

uploaded, the memory space of the process has two copies of the same library uploaded in

the memory (gdi32.dll)

Figure 16: gdi32.dll library uploaded to memory in duplicate

After mapping each one of the modules uploaded, the function moves the section .text. from

the module recently uploaded to the drive, to the .text zone of the module uploaded with the

launch of the application. After destroying the section just at the start of the “main_loop” the

malware tries to ensure it removes all possible hooks in user mode.

 NOBELIUM ANALYSIS STUDY 17 TLP:CLEAR

E

TLP:CLEAR

Figure 17: Function mapping_modules_overwrittern_text_section

Figure 17: Call to function mapping_modules_overwrittern_text_section “main_loop”

After analysing and observing the behaviour, any public implementation of this technique

has been searched for in open sources, finding the code implemented in the article Full DLL

Unhooking with C++ (Full DLL Unhooking with C++, s.f.), confirming the behaviour and

offering a simpler view of same.

As happens with the previous technique, no public references were found mentioning the

use of this technique in the campaign by this group.

 NOBELIUM ANALYSIS STUDY 18 TLP:CLEAR

E

TLP:CLEAR

Once the antihook tasks were performed, the first operation the main loop performs is to

engage in communication making use of the Dropbox API (Dropbox Platform Team, 2020).

First the sample requests a token for access to Dropbox, performing a request to

api.dropbox.com in the following way:

Figure 18: Request for Dropbox access token

In the request we can observe how it seeks to refresh the access token, providing the API

key in Base64

“aWM1eGkwYzE4cDk5cW05OjhxMWd1a3lud3gwbWd5aQ==”

ic5xi0c18p99qm9:8q1gukynwx0mgyi

api_key:api_secret

The request responds with an access token valid for 14,400 seconds (4 hours).

Figure 19: Response with access token

If the request has obtained a response, the “main loop” executes a function that we have

called “copia_ficheros_persistencia”. This function starts copying the files 6131517.pdf and

AcroSup.exe to %AppData%.

 NOBELIUM ANALYSIS STUDY 19 TLP:CLEAR

E

TLP:CLEAR

Figure 20: Movement of files to %APPDATA%

Later, via a loop, it adds a register key in which it would add the route to obtain persistence

in the infected terminal.

Figure 21: Creation of persistence in HKCU

The next request made by the malware is to the Dropbox cloud: content.dropboxapi.com:

Figure 22: POST “Upload"·request to Dropbox

In the request we can observe the route of a file in the heading “Dropbox-API-Arg”:

Rock_beb47b4715d735c9672940f2ef4a624b.mp3

 NOBELIUM ANALYSIS STUDY 20 TLP:CLEAR

E

TLP:CLEAR

We can also observe a chain at the end, starting with “ID3…….#TSSE” and ending with

repeated “U” characters. This is the structure that the .mp3 files follow, as can be seen in

the following image:

Figure 23: Example of the archive structure .mp3

In the malware logic, we can see this behaviour in the “main_loop” function.

Figure 24: Example of the archive structure .mp3

First it reserves 260 bytes of memory and accesses the “format_string” function. This

function renames the buffer as “Rock_” followed by a chain of 32 hexadecimal characters.

The creation of this identifier is not initialised in the code, so it could be the case that the

malware does so dynamically, but during the analysis it has not been possible to verify this

extreme.

“Main_loop” then starts preparing the information the group wants to exfiltrate. The

information sought for exfiltration is “UserName” and “ComputerName” formatted as follows

“UserName::ComputerName”.

Figure 25: Compilation of data to be exfiltrated

Subsequently, it performs a loop in which it performs and XOR transaction byte by byte to

encrypt the information.

 NOBELIUM ANALYSIS STUDY 21 TLP:CLEAR

E

TLP:CLEAR

Figure 26: Encryption of data via XOR

Finally, based on the function “stego_id3_exfilt” we can observe how it adds the heading

the ending of an mp3. file to the buffer.

Figure 27: Packaging of information to exfiltrate

The final request the sample makes is similar to the above:

Figure 28: Request POST “Download” to Dropbox

The structure is the same except this time it accesses the /download/ directory, which

seems to indicate that it is looking to download a resource. The file to download has the

same name and the exfiltrated file, except for the “backup” extension.

 NOBELIUM ANALYSIS STUDY 22 TLP:CLEAR

E

TLP:CLEAR

There is a function within the main loop that we have renamed “load_modules” This function
receives the “.backup.” model, downloaded in the previous request.

Figure 29: POST “Download” to Dropbox Request

This function has a similar structure, not to say identical, to DIIMain, allowing the model to

suspend a thread, change the context to the management at the start of the model and

resume the execution. This mechanism allows the group to execute modular capacities by

simply running the “.backup” extension file, and this way compromise your arsenal. This

technique does not generate new execution threads but obtains the context of an already

active one.

Figure 30: Execution of downloaded modules

Unfortunately, the route is not accessible and it was not possible to access the module in

question, therefore the next step of the campaign could not be analysed.

 NOBELIUM ANALYSIS STUDY 23 TLP:CLEAR

E

TLP:CLEAR

5. Previous Campaigns

This section aims to compare the Nobelium campaigns that have come to light since 2021

with the sample analysed in this report.

According to the sources checked the group has maintained the same entrance vector in

all campaigns since 2021 (Microsoft Threat Intelligence Center (MSTIC), 2021).

Figure 31: Entrance vectors used in Nobelium campaigns

The groups sends a spear phishing email to the victim with a HTML file attached, and this

file (nicknamed Envyscout by Microsoft) downloads and adds an ISO or IMG file using the

HTML Smuggling technique. Within this file container are the artifacts the group use to start

the infection.

24/02/2021 12/05/2021

ENVYSCOUT Invitation.html ENVYSCOUT NV.html

CONTAINER Invitation Document.iso CONTAINER nv.img

LNK FILE Plending forms.lnk LNK FILE nv.lnk

COBALT STRIKE Graphical_Component.dll BOOMBOX boom.exe

CONTAINER SMM_Report.img BAIT nv.pdf

LNK FILE Programme outline.lnk ENVYSCOUT nv.html

COBALT STRIKE dxgim.dll CONTAINER NV.img

 LNK FILE NV.lnk

02/03/2021 BOOMBOX boom.exe

ENVYSCOUT information.html 2nd PHASE CertPKlProvider.dll

CONTAINER topics_of_discussion.iso BAIT Meeting Info.docx

CONTAINER information.iso CONTAINER Attachment.img

COBALT STRIKE information.exe LNK FILE Attachment.lnk

COBALT STRIKE WRAR600.EXE BOOMBOX boom.exe

 2nd PHASE NativeCacheSvc.dll

17/03/2021

ENVYSCOUT Reply slip.html 20/05/2021

CONTAINER Reply slip.iso ENVYSCOUT NV.html

LNK FILE Reply slip.rtf.lnk CONTAINER ICA-declass.iso

COBALT STRIKE desktop.dll NATIVEZONE RtlSvcMicro.dll

 2nd PHASE Wbtr.dll

29/03/2021 BAIT Ica-declass.pdf

ENVYSCOUT cert.html

CONTAINER dppy_empty.iso

LNK FILE information.txt.lnk

COBALT STRIKE mstu.dll

 NOBELIUM ANALYSIS STUDY 24 TLP:CLEAR

E

TLP:CLEAR

22/04/2021

ENVYSCOUT attachment.html

CONTAINER attachment.iso

LNK FILE attachment.lnk

Figure 32: Artefacts utilizados by Nobelium in campaigns (2021)

18/01/2022 26/04/2022 – Sample analysed

ENVYSCOUT FW (2).html ENVYSCOUT NV.html

CONTAINER Ambassador_Absense.docx CONTAINER NV.iso

BOOMMIC javafx_font.dll LNK FILE NV.lnk

LEGITIMATE
EXE jucheck.exe - AcroSup64.dll

BEATDROP IconCacheService.dll LEGITIMATE EXE AcroSup64.exe

MALICIOUS DLL versions.dll - vcruntime140.dll

BEATDROP Trello.dll BAIT 61315171.pdf

BEATDROP msvcr170.dll

BEATDROP Trello.dll

14/02/2022

ENVYSCOUT Covid.html

CONTAINER Covid.iso

LNK FILE Covid.lnk

COBALT STRIKE DeleteDateConnectionPosition.dll

14/03/2022

ENVYSCOUT -

CONTAINER inform.iso

LNK FILE information.lnk

COBALT STRIKE WinScrollbarForUninitialize.dll

Figure 33: Artefacts used by Nobelium in campaigns (2022)[7]

Up until April of last year, the group used this attack vector to distribute samples of

CobaltStrike. It was not until May 2021 that we saw a change in the procedures, shifting to

the distribution of own samples, which Microsoft [6] named Boombox and Nativezone.

In early 2022, Nobelium resume the phishing campaigns following the same infection

method. In this campaign we find two new artifacts in the form of DLL. Mandiant

(WOLFRAM, HAWLEY, MCLELLAN, SIMONIAN, & VEJLBY, 2022) has named these

downloaders Boommic and Beatdrop.

From April 2022 it seems that the group changed malware again as the samples of

AcroSup.dll and vcruntime140.dll analysed in this report show differences with Boommic

and Beatdrop in terms of code and the techniques employed in previous samples.

The following sections summarise the capacities of each of the artifacts that comprise the

arsenal of Nobelium to achieve an entrance vector.

5.1.1. BOOMBOX

https://www.mandiant.com/resources/tracking-apt29-phishing-campaigns
https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/

 NOBELIUM ANALYSIS STUDY 25 TLP:CLEAR

E

TLP:CLEAR

Boombox es un downloader developed in C# that uses the Dropbox API to communicate

with the command and control server (C2). First, Boombox compiles the information on the

terminal, formats it, encrypts it, hides it in a PDF document and exfiltrates it via Dropbox.

Subsequently, the next phase of infection, similarly camouflaged in a PDF document, is

downloaded in the %AppData% folder.

5.1.2. Nativezone

Nativezone is a DLL downloader whose function is primarily to call rundll32.exe, to execute

the real malicious payload. The logic is found in one of the malicious DLL exports.

5.1.3. Beatdrop

Beatdrop is a downloader written in C that uses the Trello API, an administration software

for projects to communicate with C2. Beatdrop first loads the ntdll.dl library and then

suspends a threat and aims to do the same, this way it can bypass the antivirus and the

potential analyst tools. It then compiles information from the terminal in a certain format and

sends it to C2 to identify the victim. Once the user is identified, it waits to receive the payload

with the next phase of the infection.

5.1.4. Boommic

Boommic (also referred to as VaporRage by Microsoft) is another Downloader written in C

that is communicated via HTTPS. The execution of Boommic is possible thanks to a

legitimate executable file that loads a malicious DLL using the DLL Side-Loading technique.

This malicious DLL has no logic whatsoever, but contains Boommic in its imports, making

its execution necessary.

5.1.5. New Artifacts

In the analysis of AcroSup64.dll we have shown how the Dropbox API is used to contact

with the C2, just like the Boombox malware. A Boombox sample was analysed, (Microsoft

Threat Intelligence Center (MSTIC), 2021)showing that it forms the requests to the route

“/2/files/download/” the same way that AcroSup64.dll does.

Figure 34: Boombox code to contact C2

AcroSup64.dll also camouflages the data to exfiltrate in MP3 format, in a way similar to

Boombox using PDF format.

 NOBELIUM ANALYSIS STUDY 26 TLP:CLEAR

E

TLP:CLEAR

AcroSup64.dll also maintains a relationship with Beatdrop. Both samples kidnap the flow,

suspending the thread in execution and changing the context. The difference is that the

Beatdrop sample exports a malicious function that contains this logic, while AcroSup64.dll

executed its code by loading the library.

Finally the use of the DLL Side-Load and the need for an intermediate DLL for the program

to function, are features that AcroSup64.dll shares with Boommic. Once again, the

difference lies in the fact that AcroSup64.dll does not execute logic from the exports.

By way of summary, the following table which compares the sample AcroSup64.dll with the

rest of the artifacts that make up the arsenal of Nobelium for the entrance vector. As shown,

AcroSup64.dll contains capacities of several of these samples, the product of increased

sophistication of campaigns.

Figure 35: Comparison table for different artifacts of Nobelium

 BOOMBOX BEATDROP BOOMMIC AcroSup64.dll

Programming language .NET C C C

Legitimate exploited API Dropbox Trello Trello Dropbox

Type of File EXE DLL DLL DLL

T1033 System Owner/User Discovery x x x

T1036 Masqueranding x x x x

T1041 Exfiltration over C2 x x

T1055.012 Process Injection: Process Hollowing x x

T1547.001 Boot or Logon Autostart Exec.: Reg. Run Keys/Startup Folders x x

T1547.009 Boot or Logon Autostart Execution: Shortcut Modification x x x x

T1548.002 Abuse Elevation Control Mechanism: Bypass UAC x

T1562.001 Impair Defenses: Disable or Modify Tools x x

T1573.001 Encrypted Channel: Symmetric Cryptography x x

T1574.002 Hijack Execution Flow: DLL Side-Loading x x x x

 NOBELIUM ANALYSIS STUDY 27 TLP:CLEAR

E

TLP:CLEAR

6. References

[1] Team, Microsoft 365 Defender Research, «Analyzing Solorigate, the compromised DLL

file that started a sophisticated cyberattack, and how Microsoft Defender helps protect

customers,» Microsoft, 18 12 2020. [Online]. Available:

microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-

that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/.

[Last accessed: 10 05 2022].

[2] Microsoft Threat Intelligence Center (MSTIC), «New sophisticated email-based attack

from NOBELIUM,» Microsoft, 27 05 2021. [Online]. Available:

https://www.microsoft.com/security/blog/2021/05/27/new-sophisticated-email-based-

attack-from-nobelium/ . [Last accessed: 10 05 2022].

[3] MDSec Research, «Bypassing User-Mode Hooks and Direct Invocation of System Calls

for Red Teams,» MDSec, [Online]. Available:

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-

of-system-calls-for-red-teams/. [Last accessed: 10 05 2022].

[4] «Full DLL Unhooking with C++,» iRed.team, [Online]. Available:

https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-

c++. [Last accessed: 11 05 2022].

[5] Dropbox Platform Team, «OAuth Guide,» Developers Dropbox, 07 12 2020. [Online].

Available: https://developers.dropbox.com/es-es/oauth-guide. [Last accessed: 10 05

2022].

[6] Microsoft Threat Intelligence Center (MSTIC), «Breaking down NOBELIUM’s latest

early-stage toolset,» Microsoft, 28 05 2021. [Online]. Available:

https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-

early-stage-toolset/. [Last accessed: 10 05 2022].

[7] J. WOLFRAM, S. HAWLEY, T. MCLELLAN, N. SIMONIAN y A. VEJLBY, «Trello From

the Other Side: Tracking APT29 Phishing Campaigns,» Mandiant, 28 04 2022. [Online].

Available: https://www.mandiant.com/resources/tracking-apt29-phishing-campaigns.

[Last accessed: 10 05 2022].

 NOBELIUM ANALYSIS STUDY 28 TLP:CLEAR

E

TLP:CLEAR

Appendix 1: Indicators of Compromise (IOC)

Sample analysed

Files

File Hash SHA256

NV.iso 2931c944c166b610bdadf1a26668023db919d6ba35b1193399081474be4bc1f6

NV.lnk 18e0526350e135ee76ef408bc2702f204a576102f8ea5061414d9dc63a563fe5

Acrosup64.dll 3ac8c22eb7c59d35fe49c20f2a0eca06765543dfb15f455a5557af4428066641

61315171.pdf 5fdca439bea2482b7db9fdaa75c7fdf15e4014a82f570a27f09d0e551c528015

Acrosup.exe E8e63f7cf6c25fb3b93aa55d5745393a34e2a98c5aeacbc42f1362ddf64eb0da

Network connections

Type URL

C2
http://content.dropboxapi.com/2/files/upload/Rock_65c56713159f20d3e51c04e53aee217
f.mp3

C2
http://content.dropboxapi.com/2/files/download/Rock_65c56713159f20d3e51c04e53aee
217f.mp3.backup

Previous campaign samples

Files (Microsoft Threat Intelligence Center (MSTIC), 2021) (WOLFRAM, HAWLEY,

MCLELLAN, SIMONIAN, & VEJLBY, 2022)

File Hash SHA256

FW (2).html 207132befb085f413480f8af9fdd690ddf5b9d21a9ea0d4a4e75f34f023ad95d

Invitation.html ca83d7456a49dc5b8fe71007e5ac590842b146dd5c45c9a65fe57e428a8bd7c6

information.html 065e9471fb4425ec0b3a2fd15e1546d66002caca844866b0764cbf837c21a72a

Reply slip.html f5bc4a9ffc2d33d4f915e41090af71544d84b651fb2444ac91f6e56c1f2c70d5

attachment.html cfb57906cf9c5e9c91bc4aa065f7997b1b32b88ff76f253a73ee7f6cfd8fff2f

NV.html 279d5ef8f80aba530aaac8afd049fa171704fc703d9cfe337b56639732e8ce11

nv.html 9301e48ea3fa7d39df871f04072ee47b9046d76aa378a1c5697f3b2c14aef1d6

NV.html f7e8c9d19efd71f5c8217bf12bdd3f6c88d5f56ab65fea02dc2777c5402a18f1

Covid.html a896c2d16cadcdedd10390c3af3399361914db57bde1673e46180244e806a1d0

cert.html dcf48223af8bb423a0b6d4a366163b9308e9102764f0e188318a53f18d6abd25

Invitation Document.iso 6e2069758228e8d69f8c0a82a88ca7433a0a71076c9b1cb0d4646ba8236edf23

topics_of_discussion.iso a45a77ad5c138a149aa71fb323a1e2513e7ac416be263d1783a7db380d06d2fc

information.iso 112f92cfecdc4e177458bc1caebcc4420b5879840f137f249fac360ddac64ddd

dppy_empty.iso d19ff098fe0f5947e08ec23be27d3a3355e14fb20135d8c4145126caa8be4b05

attachment.iso 98473e1b8f7bedd5cfa3b83dad611db48eee23faec452e62797fb7752228c759

https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/

 NOBELIUM ANALYSIS STUDY 29 TLP:CLEAR

E

TLP:CLEAR

ICA-declass.iso 94786066a64c0eb260a28a2959fcd31d63d175ade8b05ae682d3f6f9b2a5a916

ICA-declass-2.iso d035d394a82ae1e44b25e273f99eae8e2369da828d6b6fdb95076fd3eb5de142

ICA-declass.iso 2523f94bd4fba4af76f4411fe61084a7e7d80dec163c9ccba9226c80b8b31252

Covid.iso 3cb0d2cff9db85c8e816515ddc380ea73850846317b0bb73ea6145c026276948

inform.iso 34e7482d689429745dd3866caf5ddd5de52a179db7068f6b545ff51542abb76c

Reply slip.iso 873717ea2ea01ae6cd2c2dca9d6f832a316a6e0370071bb4ee6ecff3163f8d18

SMM_Report.img 5f7d08eb2039a9d2e99ebf3d0ef2796b93d0a01e9b8ec403fec8fcdf46448693

nv.img 749bf48a22ca161d86b6e36e71a6817b478a99d935cd721e8bf3dba716224c84

NV.img e41a7616a3919d883beb1527026281d66e7bcdaff99600e462d36a58f1bdc794

Meeting Info.img 8421950453751b992dad11ceedd637b8134d4dfc0889deeb3bcf8f062b7b7acc

Attachment.img 60e20576b08a24cdaeaabc4849011885fb7517713226e2663031d9533d2187bc

attachment.lnk 3c86859207ac6071220976c52cef99abf18ae37ae702c5d2268948dda370910b

Plending forms.lnk 6866041f93141697ec166fe64e35b00c5fcd5d009500ecf58dd0b7e28764b167

Programme outline.lnk 24caf54e7c3fe308444093f7ac64d6d520c8f44ea4251e09e24931bdb72f5548

Reply slip.rtf.lnk b81beb17622d4675a1c6f4efb358cc66903366df75eb5911bca725465160bdb6

information.txt.lnk 194f4d1823e93905ee346d7e1fffc256e0befd478735f4b961954df52558c618

reports-2.lnk e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

nv.lnk eae312c5ec2028a2602c9654be679ecde099b2c0b148f8d71fca43706efe4c76

reports.lnk 48b5fb3fa3ea67c2bc0086c41ec755c39d748a7100d71b81f618e82bf1c479f0

NV.lnk 0585ed374f47d823f8fcbb4054ad06980b1fe89f3fa3484558e7d30f7b6e9597

Covid.lnk fdce78f3acfa557414d3f2c6cf95d18bdb8de1f6ffd3585256dfa682a441ac04

Attachment.lnk eae312c5ec2028a2602c9654be679ecde099b2c0b148f8d71fca43706efe4c76

information.lnk e5de12f16af0b174537bbdf779b34a7c66287591323c2ec86845cecdd9d57f53

Meeting Info.lnk 244c101f10b722b352faa1160fce05f4e19a2d840b70ef054da26de7dbb0a9da

CertPKIProvider.dll b0bfe6a8aa031f7f5972524473f3e404f85520a7553662aaf886055007a57db5

imgmountingservice.dll 2ebbb99b8dae0c7b0931190fa81add987b44d4435dafcf53a9cde0f19bb91398

NativeCacheSvc.dll 136f4083b67bc8dc999eb15bb83042aeb01791fc0b20b5683af6b4ddcf0bbc7d

IconCacheService.dll 95bbd494cecc25a422fa35912ec2365f3200d5a18ea4bfad5566432eb0834f9f

javafx_font.dll 8cb64b95931d435e01b835c05c2774b1f66399381b9fa0b3fb8ec07e18f836b0

msvcr170.dll 2f11ca3dcc1d9400e141d8f3ee9a7a0d18e21908e825990f5c22119214fbb2f5

DeleteDateConnectionPosition.

dll
6ee1e629494d7b5138386d98bd718b010ee774fe4a4c9d0e069525408bb7b1f7

WinScrollbarForUninitialize.dll e8da0c4416f4353aad4620b5a83ff84d6d8b9b8a748fdbe96d8a4d02a4a1a03c

mstu.dll 1f5a915e75ad96e560cee3e24861cf6f8de299fdf79e1829453defbfe2013239

GraphicalComponent.dll a4f1f09a2b9bc87de90891da6c0fca28e2f88fd67034648060cef9862af9a3bf

dxgim.dll 292e5b0a12fea4ff3fc02e1f98b7a370f88152ce71fe62670dd2f5edfaab2ff8

desktop.dll f9a74ac540a6584fc3ba7ccc172f948c6b716cceea313ce1d9e7b735fa2a5687

RtlSvcMicro.dll 6d08b767117a0915fb86857096b4219fd58596b42ccf61462b137432abd3920e

 NOBELIUM ANALYSIS STUDY 30 TLP:CLEAR

E

TLP:CLEAR

Wbtr.dll b295c5ad4963bdffa764b93421c3dd512ca6733b79bdff2b99510e7d56a70935

Trello.dll 5f01eb447cb63c40c2d923b15c5ecb5ba47ea72e600797d5d96e228f4cf13f13

Trello-2.dll 8bdd318996fb3a947d10042f85b6c6ed29547e1d6ebdc177d5d85fa26859e1ca

boom.exe 0acb884f2f4cfa75b726cb8290b20328c8ddbcd49f95a1d761b7d131b95bafec

boom.exe 8199f309478e8ed3f03f75e7574a3e9bce09b4423bd7eb08bb5bff03af2b7c27

boom.exe cf1d992f776421f72eabc31d5afc2f2067ae856f1c9c1d6dc643a67cb9349d8c

information.exe 88c95954800827cb68e1efdacd99093f7f9646d82613039472b5c90e5978444d

WRAR600.EXE 88c95954800827cb68e1efdacd99093f7f9646d82613039472b5c90e5978444d

NV.exe e8e63f7cf6c25fb3b93aa55d5745393a34e2a98c5aeacbc42f1362ddf64eb0da

AcroSup64.dll 6618a8b55181b1309dc897d57f9c7264e0c07398615a46c2d901dd1aa6b9a6d6

vcruntime140.dll 2028c7deaf1c2a46f3ebbf7bbdf76781d84f9321107d65d9b9dd958e3c88ef5a

documents-2.dll

(Cobalt Strike)
ee42ddacbd202008bcc1312e548e1d9ac670dd3d86c999606a3a01d464a2a330

documents.dll

(Cobalt Strike)
ee44c0692fd2ab2f01d17ca4b58ca6c7f79388cbc681f885bb17ec946514088c

ICA-declass-2.pdf 7288b7ed63a39f98a196ef735a23c522c63f46d8344dc36fffd1920d32057c55

ica-declass.pdf 7d34f25ad8099bd069c5a04799299f17d127a3866b77ee34ffb59cfd36e29673

Meeting info.docx d37347f47bb8c7831ae9bb902ed27a6ce85ddd9ba6dd1e963542fd63047b829c

blank.pdf 0622971147486e1900037eff229d921d14f5b51aac7171729b2b66f81cdf6585

state ellection changes.docx 574b7a80d8b9791cb74608bc4a9fcba4e4574fafef8e57bdee340728445ebd16

ICA-declass.pdf 7d34f25ad8099bd069c5a04799299f17d127a3866b77ee34ffb59cfd36e29673

nv.pdf 73ca0485f2c2c8ba95e00188de7f5509304e1c1eb20ed3a238b0aa9674f9104e

Ambassador_Absense

.docx
7ff9891f4cfe841233b1e0669c83de4938ce68ffae43afab51d0015c20515f7b

Network connections (Microsoft Threat Intelligence Center (MSTIC), 2021)
(WOLFRAM, HAWLEY, MCLELLAN, SIMONIAN, & VEJLBY, 2022)

Type URL / IP

C2 URL aimsecurity.net

C2 URL cdn.theyardservice.com

C2 URL cdnappservice.firebaseio.com

C2 URL cityloss.com

C2 URL content.pcmsar.net

C2 URL cross-checking.com

C2 URL dailydews.com

C2 URL dataplane.theyardservice.com

C2 URL doggroomingnews.com

C2 URL email.theyardservice.com

C2 URL emergencystreet.com

C2 URL enpport.com

https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/

 NOBELIUM ANALYSIS STUDY 31 TLP:CLEAR

E

TLP:CLEAR

C2 URL eventbrite-com-default-rtdb.firebaseio.com

C2 URL financialmarket.org

C2 URL giftbox4u.com

C2 URL hanproud.com

C2 URL holescontracting.com

C2 URL humanitarian-forum-default-rtdb.firebaseio.com

C2 URL newsplacec.com

C2 URL newstepsco.com

C2 URL pcmsar.net

C2 URL security-updater-default-rtdb.firebaseio.com

C2 URL smtp2.theyardservice.com

C2 URL static.theyardservice.com

C2 URL stockmarketon.com

C2 URL stsnews.com

C2 URL supportcdn-default-rtdb.firebaseio.com

C2 URL tacomanewspaper.com

C2 URL techiefly.com

C2 URL theadminforum.com

C2 URL theyardservice.com

C2 URL trendignews.com

C2 URL usaid.theyardservice.com

C2 URL worldhomeoutlet.com

C2 URL cdnappservice.web.app

C2 URL logicworkservice.web.app

C2 URL humanitarian-forum.web.app

C2 URL security-updater.web.app

C2 URL eventbrite-com-default-rtdb.firebaseio.com

C2 URL supportcdn.web.app

C2 IP 139.99.167.177

C2 IP 185.158.250.239

C2 IP 195.206.181.169

C2 IP 37.120.247.135

C2 IP 45.135.167.27

C2 IP 51,254,241,158

C2 IP 51.38.85.225

 NOBELIUM ANALYSIS STUDY 32 TLP:CLEAR

E

TLP:CLEAR

Appendix 2: Yara Detection Rule

import "pe"

rule NOBELIUM_AcroSup {

 strings:

 $op1 = "AcroSup"

 $op2 = ".mp3"

 $op3 = ".backup"

 $op4 = "vcruntime140"

 $exfilt = "%s::%s" ascii wide

 $s1 = "POST" ascii wide

 $s2 = ".pdf" ascii wide nocase

 $s3 = "sl" ascii wide nocase

 $hex1 = { ?? ?? ?? ?? ?? 48 8B F0 C7 44 24 50 04 01 00 00 33 C0 48 8D BD E0 00 00 00 B9 04 01

00 00 4C 8D 44 24 50 F3 AA 8D 48 02 48 8D 95 E0 00 00 00 ?? ?? ?? ?? ?? ?? 48 8D 85 E0 00 00 00 4C 89 7C

24 60 49 83 C8 FF C7 44 24 68 01 23 45 67 C7 44 24 6C 89 AB CD EF C7 44 24 70 FE DC BA 98 C7 44 24 74 76

54 32 10 0F 1F 40 00 }

 $hex2 = { 48 8D 95 E0 00 00 00 48 8D 4C 24 60 ?? ?? ?? ?? ?? 48 8D 4C 24 60 ?? ?? ?? ?? ?? B9

10 00 00 00 ?? ?? ?? ?? ?? 0F 10 45 B8 B9 04 01 00 00 48 8B D8 0F 11 00 ?? ?? ?? ?? ?? 48 8B F8 4C 8B E8 33

C0 B9 04 01 00 00 F3 AA 8D 78 10 66 66 66 0F 1F 84 00 00 00 00 00 }

 condition:

pe.number_of_exports == 1 and pe.imports("wininet.dll") and pe.imports("secur32.dll") and

 (all of ($s*) or 3 of ($op*)) and

$exfilt and all of ($hex*) and pe.is_dll()

}

TLP:CLEAR

TLP:CLEAR

TE

	Figures
	Tables
	1. About this Study
	2. Document Structure
	3. Introduction
	4. Technical Report
	4.1. Chain of infection
	4.2. Analysis of the infection

	5. Previous Campaigns
	5.1.1. BOOMBOX
	5.1.2. Nativezone
	5.1.3. Beatdrop
	5.1.4. Boommic
	5.1.5. New Artifacts

	6. References
	Appendix 1: Indicators of Compromise (IOC)
	Appendix 2: Yara Detection Rule

