

TLP:

WHITE

WannaMine analysis study

 WANNAMINE ANALYSIS STUDY 2 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Author:

Antonio Rodríguez Fernández.

Collaborator:

Álvaro Botas Muñoz.

April 2021

INCIBE-CERT_WANNAMINE_ANALYSIS_STUDY_2021_v1

This publication belongs to INCIBE (National Cybersecurity Institute) and is licensed under a Creative Commons Attribution-Non-

commercial 3.0 Spain licence. Therefore, this work may be copied, distributed and publicly communicated under the following

conditions:

• Acknowledgement. The content of this report can be reproduced in whole or in part by third parties, citing its origin and making

express reference to both INCIBE or INCIBE-CERT and its website: https://www.incibe.es/. Such acknowledgement may not in

any circumstances suggest that INCIBE provides support to said third party or supports the use made of its work.

• Non-Commercial Use. The original material and derivative works may be distributed, copied and displayed as long as they

are not used for commercial purposes.

For any reuse or distribution, you must make this work’s licence terms clear to others. Any of the above conditions can be waived

if you get permission from INCIBE-CERT as the copyright holder. Full text of the licence: https://creativecommons.org/licenses/by-

nc-sa/3.0/es/.

https://www.incibe.es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/

 WANNAMINE ANALYSIS STUDY 3 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Contents
LIST OF FIGURES ... 4
1. About this study ... 5
2. Organisation of the document .. 6
3. Introduction .. 7
4. Technical report ... 8

4.1. General Information ... 8

4.1.1. int6.ps1 .. 8

4.1.2. “funs” ... 8

4.1.3. “mimi”: Mimikatz ... 8

4.1.4. “mon”: XMRig miner ... 9

4.1.5. WinRing0x64.sys ... 9

4.1.6. mue.exe ... 9

4.1.7. Payload 2: Alternative XMRig miner ..10

4.1.8. “sc”: EternalBlue Shellcode ...10

4.2. Summary of actions ... 10

4.3. Detailed analysis .. 10
4.4. Persistence .. 17

4.5. Lateral movement .. 18

4.5.1. Remote execution with WMI ...20

4.5.2. Remote execution with Samba ..21

4.5.3. Eternal Blue ..22

4.6. Cryptocurrency mining ... 26

4.6.1. Method 1 ...26

4.6.2. Method 2 ...29

4.7. System cleaning ... 33

5. Conclusion .. 35
Appendix 1: Indicators of Compromise (IOC) .. 36

6.1. URL and URis: ... 36
6.2. Files and paths ... 36
6.3. Hashes ... 37
6.4. System settings .. 38
6.5. Yara rules ... 39

6.6. Monero Wallets involved in Cryptojacking attacks 40

 WANNAMINE ANALYSIS STUDY 4 TLP:WHITE

TLP:

WHITE

TLP:WHITE

LIST OF FIGURES

Illustration 1: Variable that contains data in base64... 11
Illustration 2: Obfuscated dropper code ... 11
Illustration 3: Dropper de-obfuscating tool ... 12
Illustration 4: Bypass of AMSI hidden in base64 .. 13
Illustration 5: AMSI ScanBuffer Bypass ... 13
Illustration 6: Alternative URLs for downloading the dropper ... 14
Illustration 7: If the system is 32 bit, it downloads a new dropper, presumably with the same

functionality, but adapted to this architecture ... 14
Illustration 8: Recomposition of artifacts .. 15
Illustration 9: A tool for extract the artifacts from the int6.ps1 dropper ... 16
Illustration 10: Power settings .. 16
Illustration 11: Preparation of the persistence payload .. 17
Illustration 12: WMI event subscription setup ... 18
Illustration 13: Call to the Get-creds function ... 19
Illustration 14: PowerShell function that uses the Mimikatz DLL ... 19
Illustration 15: Use of Invoke-Parallel to execute a thread for each IP .. 20
Illustration 16: In each thread, the string is executed for each credential obtained 20
Illustration 17: Creation of a scheduled task remotely using “net use” .. 22
Illustration 18: EternalBlue scanning and exploitation ... 22
Illustration 19: Part of the EternalBlue scanning function .. 23
Illustration 20: Part of the EternalBlue exploit .. 23
Illustration 21: Comparison of the “selector” according to whether it is disassembled in 32 or 64 bits.

In the first case, the execution will continue, in the second it will jump to the 64-bit shellcode 24
Illustration 22: Comparison between the malware shellcode and the one available on GitHub. Only

the final payload is different .. 25
Illustration 23: Mon fileless execution and connection checking .. 26
Illustration 24: Configuration embedded in the executable .. 27
Illustration 25: Write to WinRing0x64.sys disk ... 28
Illustration 26: Writing to disk and execution of mue.exe ... 29
Illustration 27: Preparation of the payload in memory to inject into schtasks.exe 30
Illustration 28: Process hollowing the process created earlier for schtasks.exe 31
Illustration 29: Dump of the payload injected into schtasks.exe .. 32

 WANNAMINE ANALYSIS STUDY 5 TLP:WHITE

TLP:

WHITE

TLP:WHITE

1. About this study

This study contains a detailed technical report, which was undertaken after the analysis of

a sample of malicious code, with the main purpose of identifying the actions it performs,

how it spreads, as well as identifying the family it belongs to and possible destructive effects

it may cause, to know it and be able to carry out adequate prevention and response actions.

The sample subject to this analysis, developed by the INCIBE-CERT team, is a malicious

PowerShell artifact, which was detected in the systems of at least one national body.

The actions performed during the analysis of this threat include static, dynamic analysis and

open-source research. The scope of the reverse engineering for each of the artifacts

investigated is to detect the malicious actions they may contain, and not to fully dissect their

functions.

This study is aimed in general at IT and cybersecurity professionals, researchers and

technical analysts interested in the analysis and investigation of this type of threats, as well

as at system and IT network administrators in order that they keep their machines up-to-

date and secure against this threat.

 WANNAMINE ANALYSIS STUDY 6 TLP:WHITE

TLP:

WHITE

TLP:WHITE

2. Organisation of the document

This document consists of a 3.- Introduction, containing a summary of the process of

analysis of a sample belonging to the WannaMine family, its main purpose, its historical

context, as well as its main functionalities, characteristics and behaviour.

Next, in section 4.- Technical report, the artifacts extracted during the threat analysis and

the actions it can execute are identified, to focus later on a detailed, step-by-step analysis

of the malware.

Finally, section 5.- Conclusion, sets out the most important aspects discussed over the

course of the study.

Moreover, the document has a complete Appendix 1: Indicators of Compromise (IOC)

including very useful IOC rules for detecting the sample.

 WANNAMINE ANALYSIS STUDY 7 TLP:WHITE

TLP:

WHITE

TLP:WHITE

3. Introduction

The starting sample for this investigation is a PowerShell file with various layers of

obfuscation, whose input vector during the first infection is unknown.

From analysing it, it was determined that it is malware of the WannaMine family, whose

main purpose is cryptojacking (using the affected machines for cryptocurrency mining),

and that it attempts to spread through the entire affected network.

WannaMine has been known since 2017, and there are several variantes with various

functionalities and modules. It was determined that the sample analysed in this research

was created at the end of 2019.

As we shall see during the analysis, this malware consists of several artifacts, and it is able

to extract credentials from the affected systems using Mimikatz, and to exploit the CVE-

2017-0144 vulnerability1 known as EternalBlue to obtain access to other machines on the

network where it cannot do so with the credentials obtained using native Windows remote

execution mechanisms.

The attack is partially fileless in order to bypass antivirus programs and automatic scans in

sandboxes, since it uses PowerShell to try to execute everything in memory.

We say partially because in fact it ends up writing some artifacts to disk, spoiling the

frustrating the fileless mechanism and thus creating a detection opportunity.

The damage caused by the analysed sample is not too high, since it does not seem to carry

out hostile actions beyond spreading and mining cryptocurrencies; however, the initial input

vector, which could be a greater attack, is unknown.

Moreover, during the infection, it may leave some systems in a vulnerable state since, under

certain circumstances, it may install a driver with known vulnerabilities that allow for

escalation of local privileges. The installation of this driver is linked to better functioning of

the mining software, hence the vulnerabilities introduced are not exploited during the

infection, and it seems more collateral damage than something premeditated.

1 https://www.incibe-cert.es/alerta-temprana/vulnerabilidades/cve-2017-0144

 WANNAMINE ANALYSIS STUDY 8 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4. Technical report

4.1. General Information

During the analysis of this threat, various artifacts were extracted, which are summarised

below:

4.1.1. int6.ps1

Dropper, which carries out the initial infection on each of the affected machines. This is the

starting file for this analysis:

Artifact int6.ps1

MD5 3b8e4705bbc806b8e5962efe39a35f66

SHA1 601daafe2b7725a46520580fa18d0c1103af00f2

SHA256 88b7f7517d70ae282a17bff20382599566cc4ff14492f18158fd4a9285ef89ff

4.1.2. “funs”

This artifact is a PowerShell script containing a multitude of ancillary functions, and the

lateral movement functionality. A large share of the functionality comes from frameworks,

such as Empire.

Artifact “funs”

MD5 b2de128c2f70dc74cc25680bc6ac9a94

SHA1 9739ff09665d32dd09a73c25fdbb3e4538ab26a0

SHA256 e27b534c2d296ce0e987bf3d0a0bb13a9d252c81b5ae7557e36368ba560c6f4f

4.1.3. “mimi”: Mimikatz

It is a Mimikatz binary, which is run through reflected injection,2 thus preventing it from being

written to disk, and which is used to obtain system credentials.

Artifact “mimi”

MD5 0367064d9585cc5c8b8eff127d9565d0

SHA1 784720bab9106e47c5b34d7f0fa12d1388fe1f9d

SHA256 d82889279c771f362f870a5f896fc435790cbd0b587e86efcd4164570ce12a72

2 https://attack.mitre.org/techniques/T1055/001/

 WANNAMINE ANALYSIS STUDY 9 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.1.4. “mon”: XMRig miner

This is a binary of the XMRig software,3 an open-source cryptocurrency miner that is popular

in cryptojacking attacks. It runs in memory using PowerShell; hence the binary is not written

to disk.

Artifact “mon”

MD5 91ff884cff84cb44fb259f5caa30e066

SHA1 c68e4d9bc773cfef0c84c4a33d94f8217b12cb8b

SHA256 5a0ec41eb3f2473463b869c637aa93fac7d97faf0a8169bd828de07588bd2967

4.1.5. WinRing0x64.sys

This artifact is a signed and legitimate driver4 used by the XMRig miner that enables it to

configure the MSR records5,6 to optimise the mining performance.

This driver is known to contain7 vulnerabilities that make it possible to carry out local

privilege escalation, though this is not its function during the WannaMine attack.

Artifact WinRing0x64.sys

MD5 0c0195c48b6b8582fa6f6373032118da

SHA1 d25340ae8e92a6d29f599fef426a2bc1b5217299

SHA256 11bd2c9f9e2397c9a16e0990e4ed2cf0679498fe0fd418a3dfdac60b5c160ee5

4.1.6. mue.exe

This artifact is written to disk during the infection, and its task is to inject a payload into a

legitimate process by means of process hollowing8.

Artifact mue.exe

MD5 d1aed5a1726d278d521d320d082c3e1e

SHA1 efdb3916c2a21f75f1ad53b6c0ccdf90fde52e44

SHA256 0a1cdc92bbb77c897723f21a376213480fd3484e45bda05aa5958e84a7c2edff

3 https://github.com/xmrig/xmrig

4 https://openlibsys.org/manual/WhatIsWinRing0.html

5 https://github.com/xmrig/xmrig/releases/tag/v5.3.0

6 https://xmrig.com/docs/miner/randomx-optimization-guide/msr

7 https://www.incibe-cert.es/alerta-temprana/vulnerabilidades/cve-2020-14979

8 https://attack.mitre.org/techniques/T1055/012/

 WANNAMINE ANALYSIS STUDY 10 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.1.7. Payload 2: Alternative XMRig miner

This artifact was found in memory while running mue.exe, and it is an old version of the

XMRig miner.

Artifact Payload contenido en mue.exe

MD5 c467df0639ffa846dbbb6fc8db1c1020

SHA1 41bb5b29c9c5ede666c84e58aaf99ed7b48706ee

SHA256 c62f502d9a90eae7222e4402c5c63cb91180675ea0b9877dee6a845f1ee59f2a

4.1.8. “sc”: EternalBlue Shellcode

This artifact was identified as a shellcode for exploiting the EternalBlue vulnerability, and it

is used to infect a new machine with WannaMine during the lateral movement.

Artifact sc

MD5 25ada18486a82950bf71ade22bc26446

SHA1 94507ad582d158c36536c24591c9ed09c90592e0

SHA256 30a1cb62beea2b65e888b76ac01fe832de85e7ac6ff5b6c093b7e8892e4fe2e4

4.2. Summary of actions

This threat can perform the following actions:

 Evading the Anti-Malware Scan Interface (AMSI).

 Maintaining persistence in the system by subscribing to WMI events.

 Extracting NTLM tokens.

 Scanning for the EternalBlue vulnerability.

 Spreading to other systems by exploiting EternalBlue.

 Spreading to other systems using remote WMI execution with Pass-the-Hash.

 Spreading to other systems using remote SMB execution with Pass-the-Hash.

 Install software to mine cryptocurrencies by running fileless (PowerShell).

 Install software to mine cryptocurrencies using injection (Process Hollowing)

 Modify Windows settings to optimise the mining performance.

 Modify Windows settings to achieve persistence.

 Leave the system in a state that is vulnerable to escalation of local privileges

(collateral damage).

4.3. Detailed analysis

int6.ps1 is an obfuscated PowerShell script, its size is 6.7 MB, which is downloaded from a

malicious URL and which acts as a dropper to infect the target machine.

 WANNAMINE ANALYSIS STUDY 11 TLP:WHITE

TLP:

WHITE

TLP:WHITE

For this analysis, the initial infection vector is unknown, but the same file is downloaded

again from a malicious link in each of the machines during the malware’s later movements.

The obfuscated code consists of two independent blocks:

A ‘$fa’ variable containing base64-encoded data, and it occupies almost the whole file

(6.6MB):

Illustration 1: Variable that contains data in base64

And a block of code (the remaining kilobyte) that uses various layers of obfuscation albeit

not very sophisticated ones, which denotes that its function is to prevent detection by

antivirus programs, and not their analysis. This code is executed using Invoke-Expression

(iex):

Illustration 2: Obfuscated dropper code

Once the second block of code has been de-obfuscated, it is observed that it is a dropper

responsible for installing the malware’s artifacts on the system, as well as for initiating lateral

movement actions to infect other machines on the network.

 WANNAMINE ANALYSIS STUDY 12 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 3: Dropper de-obfuscating tool

At the beginning of the script, we can find a block of code that prepares the execution of the

PowerShell to bypass Windows’s Anti-Malware Scan Interface (AMSI). This is the

mechanism Windows uses to detect malicious behaviour in fileless artifacts, that is,

executions that are only carried out in memory but which write nothing to the disk.

 WANNAMINE ANALYSIS STUDY 13 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 4: Bypass of AMSI hidden in base64

Illustration 5: AMSI ScanBuffer Bypass

 WANNAMINE ANALYSIS STUDY 14 TLP:WHITE

TLP:

WHITE

TLP:WHITE

A URL list is then prepared, of which it will choose one depending upon its availability to

download the dropper on the new machines while they are spreading.

Illustration 6: Alternative URLs for downloading the dropper

Illustration 7: If the system is 32 bit, it downloads a new dropper, presumably with the same
functionality, but adapted to this architecture

The code in PowerShell of the evasion technique used, AMSI ScanBuffer Bypass,9 dates

from the middle of 201910, hence, despite the lack of references to very similar WannaMine

attacks since 2017, the sample analysed is the most recent one.

Another relevant part of the code is the following, where the content of the ‘$fa’ variable that

occupies 95% of the file:

9 https://secureyourit.co.uk/wp/2019/05/10/dynamic-microsoft-office-365-amsi-in-memory-bypass-using-vba/

10 https://github.com/rasta-mouse/AmsiScanBufferBypass/blob/master/ASBBypass.ps1

 WANNAMINE ANALYSIS STUDY 15 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 8: Recomposition of artifacts

As may be seen, there are various artifacts that make up the bulk of the attack, and whose

names are variables, which can give us a clue to their function. These artifacts are

encapsulated in a WMI class, systemcore_Updater8 to sustain their persistence in the

system and their subsequent use.

These binaries were extracted to be analysed in this report.

 WANNAMINE ANALYSIS STUDY 16 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 9: A tool for extract the artifacts from the int6.ps1 dropper

Finally, it configures the system’s power options, to prevent it from being suspended or

hibernating, as we shall see below, to exploit the system as much as possible in

cryptocurrency mining.

Illustration 10: Power settings

 WANNAMINE ANALYSIS STUDY 17 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.4. Persistence

The script encapsulates much of its code in a base64-encoded variable, which will be used

to deploy the persistence in the system, through subscribing to WMI events.

Illustration 11: Preparation of the persistence payload

Two filters, two consumers and two WMI binders are created respectively, which execute

the same payload:

SCM Event8 Log Consumer: It runs approximately every 3 hours and 45 minutes (to

refresh the reinfection if the processes have crashed).

SCM Event8 Log Consumer2: It is executed between 240 and 301 seconds after the

system startup.

The payload contains the PowerShell script which had been stored in base64, and obtains

the binary artifacts by accessing the systemcore_Updater8 WMI class.

 WANNAMINE ANALYSIS STUDY 18 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 12: WMI event subscription setup

4.5. Lateral movement

The funs file is a non-obfuscated PowerShell script containing all the functionality to attempt

to infect other systems on the network.

A large share of the code is reused with small modifications, and is from the post-

exploitation Empire11framework.

This script provides the malware with several mechanisms for spreading, which it tries in

sequence until one of them returns a result.

On dropper int6.ps1, there is a block of code where, firstly, the Get-creds function contained

in funs is used, with the mimi artifact passing it as arguments.

11 https://github.com/EmpireProject/Empire

 WANNAMINE ANALYSIS STUDY 19 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 13: Call to the Get-creds function

As could be expected from the variable’s name, this artifact is a generic12 Mimikatz binary,

which is used to attempt to extract credentials from the system: usernames, passwords

and/or NTLM tokens. It will use these credentials in several of the mechanisms that it will

attempt to spread.

Illustration 14: PowerShell function that uses the Mimikatz DLL

12 https://github.com/gentilkiwi/mimikatz

 WANNAMINE ANALYSIS STUDY 20 TLP:WHITE

TLP:

WHITE

TLP:WHITE

As we saw in the previous two images, the lateral movement string begins by calling the

test-net function to which an array is passed with the B- and C-class IPs revealed

discovered on the network.

This function will launch a parallel attack for each IP.

Illustration 15: Use of Invoke-Parallel to execute a thread for each IP

In turn, in each thread, it will start the string for each credential contained in $creds, which

had been extracted with Mimikatz.

Illustration 16: In each thread, the string is executed for each credential obtained

4.5.1. Remote execution with WMI

The code it uses to carry out this attack is quite long, hence we summarise the steps it

takes.

The first thing it will try to do is to verify whether port 135 (RPC) is open on the remote

machine, and to attempt to download and run the dropper.

If so, it will attempt the following steps, until one returns a result, first verifying whether the

machine is already infected or not:

 WANNAMINE ANALYSIS STUDY 21 TLP:WHITE

TLP:

WHITE

TLP:WHITE

 If there is any NTLM token extracted with Mimikatz, it will attempt a Pass-the-Hash13

attack using Invoke-WMIpth

 Username in $creds + NTLM token

 “Administrator” + NTLM token

 If it does not have an NTLM token, it will use Invoke-WmiMethod -class

win32_process

 Usernames in $creds + passwords in $creds

 “administrator” + passwords in $creds

4.5.2. Remote execution with Samba

If the WMI method does not work, it will search for computers with an open 445 (Samba)

port.

In this case, the attack is very similar to the previous one:

 If there is any NTLM token extracted with Mimikatz, it will attempt a Pass-the-Hash14

attack using Invoke-SMBIpth

 Username in $creds + NTLM token

 “administrator” + NTLM token

 If it does not have an NTLM token, it will use Invoke-SMBExec

 Usernames in $creds + passwords in $creds

 “administrator” + passwords in $creds

 The third attempt will be made with shared resources and will create a scheduled

task.

13 https://attack.mitre.org/techniques/T1550/002/

14 https://attack.mitre.org/techniques/T1550/002/

 WANNAMINE ANALYSIS STUDY 22 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 17: Creation of a scheduled task remotely using “net use”

4.5.3. Eternal Blue

As a last resort, if all the above mechanisms have failed, WannaMine will attempt to find the

EternalBlue vulnerability on remote machines and exploit it.

Illustration 18: EternalBlue scanning and exploitation

To do so, it will use a function that will scan the systems to verify whether they are

vulnerable.

 WANNAMINE ANALYSIS STUDY 23 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 19: Part of the EternalBlue scanning function

It also has a function with the exploit of this vulnerability, which will use the sc artifact as

shellcode.

Illustration 20: Part of the EternalBlue exploit

 WANNAMINE ANALYSIS STUDY 24 TLP:WHITE

TLP:

WHITE

TLP:WHITE

sc is a shellcode in dual mode15, that is, it contains both a part for x86 systems and another

for x86_64, using one or another according to the architecture where its execution begins.

This binary uses a public generic shellcode 16 for EternalBlue, with minor modifications, and

by adding the payload from WannaMine.

The full code is composed as follows:

selector generic x86 shellcode payload generic x86_64 shellcode payload

The selector is 9 bytes, which are interpreted as different instructions depending upon the

architecture, which makes it possible to jump from one shellcode to another.

Illustration 21: Comparison of the “selector” according to whether it is disassembled in 32 or 64 bits.
In the first case, the execution will continue, in the second it will jump to the 64-bit shellcode

15 https://modexp.wordpress.com/2017/01/24/shellcode-x84/

16 https://github.com/3ndG4me/AutoBlue-MS17-010/tree/master/shellcode

https://modexp.wordpress.com/2017/01/24/shellcode-x84/

 WANNAMINE ANALYSIS STUDY 25 TLP:WHITE

TLP:

WHITE

TLP:WHITE

The added payload is the execution of a PowerShell that verifies whether the machine is

already infected and, if not, it infects it by downloading a new dropper (in this case, in3.ps1,

since it does not know whether the machine is 32 or 64 bit).

Illustration 22: Comparison between the malware shellcode and the one available on GitHub. Only the
final payload is different

 WANNAMINE ANALYSIS STUDY 26 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.6. Cryptocurrency mining

The main purpose of WannaMine is to execute a cryptocurrency miner. To do so, it has two

different artifacts, and it is not capable of executing one of them, it will attempt to do so with

the other.

4.6.1. Method 1

First, it attempts to run the mon artifact. This execution may be considered to be fileless

since the binary does not exist in the disk as an executable, but rather is contained in the

systemcore_Updater8 class codified in base64, and it is decodified and executed in

memory by means of PowerShell.

Once the PowerShell has been launched, it is verified whether said process has established

any connection to ports 80 or 14444; if so, the execution is considered satisfactory.

Illustration 23: Mon fileless execution and connection checking

mon is an executable PE x86_64 and, after studying the strings it contains, and executing

it in an isolated environment, the conclusion is reached that it is the XMRig open-source

miner.

In the strings we can also find the version and when it has been compiled.

XMRig 6.4.0\n built on Nov 3 2019 with MSVC

 WANNAMINE ANALYSIS STUDY 27 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Comparing it with the open-source version, it does not seem to be of any greater

importance, except for some modifications embedded in the binary itself, rather than using

an external json.

This configuration contains information such as what type of currency to mine, what pools

to use for mining, and which wallet to use.

Illustration 24: Configuration embedded in the executable

As can be seen, it is configured to mine the Monero cryptocurrency, which is very popular

in this type of attacks.

We also extract the wallet, since, given it is contained in the strings, it may server as an

indicator of compromise.

46fWRc6YzftENCetJsN8zYM1EUb6ziekK8ykrZTL4AWDZ94NwkSCRTAD8MLtqwgjKP

6dRv9uSpHt7jjmdfbG7HpdCp5nhUW

 WANNAMINE ANALYSIS STUDY 28 TLP:WHITE

TLP:

WHITE

TLP:WHITE

The addresses of pools of blocks to which it makes connections are as follows: :

xmr-eu1.nanopool.org:14444

xmr-asia1.nanopool.org:14444

xmr-eu2.nanopool.org:14444

xmr-us-east1.nanopool.org:14444

xmr-us-west1.nanopool.org:14444

pool.minexmr.com:80

sg.minexmr.com:80

ca.minexmr.com:80

As can be seen from the ports used in said pools, if the miner established any connection,

the execution was considered successful.

Another artifact related to this miner is ring, which is indeed written to disk with the name

WinRing0x64.sys (frustrating the fileless purpose of the attack).

Illustration 25: Write to WinRing0x64.sys disk

This file is a driver signed by Microsoft17, and is installed on the system by the XMRig miner

itself if it has elevated privileges.

The driver as such is not malicious, and XMRig18 uses it to optimise the RandomX19 Monero

mining algorithm giving it access to manipulation of MSR records.

It might be highlighted that the driver will be installed by mon during its execution, if it has

sufficient privileges, using the CreateServiceW service.

A peculiarity is that this driver, which is known to contain20 vulnerabilities that make it

possible to obtain SYSTEM privileges.

Albeit it is true that WannaMiner therefore does not install it, nor take advantage of it in any

of the artifacts, the installation of this driver into this system may leave it in a vulnerable

state, hence it is recommendable that it be uninstalled.

17 https://openlibsys.org/manual/WhatIsWinRing0.html

18 https://github.com/xmrig/xmrig/releases/tag/v5.3.0

19 https://xmrig.com/docs/miner/randomx-optimization-guide/msr

20 https://www.incibe-cert.es/alerta-temprana/vulnerabilidades/cve-2020-14979

 WANNAMINE ANALYSIS STUDY 29 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.6.2. Method 2

If a successful execution is not achieved with PowerShell, WannaMine attempts to execute

a different artifact, this time creating the process using the Win32_process.Create method

invoked with WMI. To do so, it if it has to write to artifact to disk, it does so with the name

mue.exe in the system path (windows/system32).

Illustration 26: Writing to disk and execution of mue.exe

By analysing this binary, we find strings referring to schtask.exe

%SystemRoot%\\SysWoW64\\schtasks.exe

%SystemRoot%\\system32\\schtasks.exe

By studying the functions that use them, we can see that a suspended schtask.exe process

is created, which is then dumped into the memory and replaced with a new memory block

before resuming it. This is known as Process Hollowing and is used to inject code into a

legitimate process, such that antivirus systems or analysis sandboxes can be bypassed, by

carrying out the binary change in memory and not touching the disk with the final payload.

We may also find the functions the payload in memory, after obfuscating it and

decompressing it.

 WANNAMINE ANALYSIS STUDY 30 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 27: Preparation of the payload in memory to inject into schtasks.exe

 WANNAMINE ANALYSIS STUDY 31 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 28: Process hollowing the process created earlier for schtasks.exe

 WANNAMINE ANALYSIS STUDY 32 TLP:WHITE

TLP:

WHITE

TLP:WHITE

To obtain the final payload, debug mue.exe to where it finishes decompressing and de-

obfuscating the buffer, then perform a memory capture of said buffer. A glance at said buffer

suffices to see it is an executable binary (magic number MZ)

Illustration 29: Dump of the payload injected into schtasks.exe

This payload is an executable PE x86_64 and, after studying the strings it contains, and

executing it in an isolated environment, the conclusion is reached that it is the XMRig open-

source miner.

This time it is an older version of XMRig than mon, and which does not use

WinRing0x64.sys.

XMRig 5.0.1\n built on Dec 1 2019 with MSVC

It is also noteworthy that it uses a different wallet, which may imply that the original malware

is being reused by a second attacker:

46gVfDm99aq9JqESFxXFp5AyFCZPHsbTn48dWAtVASddf4TmhQMkxvQadhKPvAjszJ

V8cQKVHHLQ7WpNrh33ogkGUPHhpVP

 WANNAMINE ANALYSIS STUDY 33 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4.7. System cleaning

To eliminate this specific WannaMine from an infected system, the following PowerShell

can be executed with Administrator privileges, and the machine can be restarted when that

is finished.

Get-WMIObject -Namespace root\subscription -Class __FilterToConsumerBinding -

Filter “__Path LIKE '%SCM Event8 Log Consumer%'’' | Remove-WmiObject

Get-WMIObject -Namespace root\subscription -Class __EventFilter -filter “Name LIKE

'%SCM Event8 Log Filter%'’' |Remove-WmiObject

Get-WMIObject -Namespace root\subscription -Class CommandLineEventConsumer -

Filter ('Name like '%SCM Event8 Log Consumer%'') | Remove-WmiObject

Get-WMIObject -Namespace root\default -List | where {$_.Name –eq

'systemcore_Updater8'} | Remove-WmiObject

sc.exe stop WinRing0_1_2_0

sc.exe delete WinRing0_1_2_0

if

([System.IO.File]::Exists([environment]::SystemDirectory+‘\WindowsPowerShell\v1.0\Wi

nRing0x64.sys’)) {

 echo (‘Borrando

‘+[environment]::SystemDirectory+‘+‘\WindowsPowerShell\v1.0\WinRing0x64.sys’) ;

 rm ([environment]::SystemDirectory\WindowsPowerShell\v1.0\WinRing0x64.sys)

}

if ([System.IO.File]::Exists([environment]::SystemDirectory+‘\drivers\WinRing0x64.sys’))

{

 echo (‘Borrando ‘+[environment]::SystemDirectory+‘+‘\drivers\WinRing0x64.sys’) ;

 rm ([environment]::SystemDirectory\drivers\WinRing0x64.sys)

}

if ([System.IO.File]::Exists([environment]::SystemDirectory+‘\mui.exe’)) {

 echo (‘Borrando ‘+[environment]::SystemDirectory+‘\mui.exe’) ;

 rm ([environment]::SystemDirectory\mue.exe)

 WANNAMINE ANALYSIS STUDY 34 TLP:WHITE

TLP:

WHITE

TLP:WHITE

}

if ([System.IO.File]::Exists($env:WINDIR+‘\temp\sysupdater0.bat’)) {

 echo “Borrando $env:WINDIR\temp\sysupdater0.bat” ;

 rm $env:WINDIR\temp\sysupdater0.bat

}

if ([System.IO.File]::Exists($env:WINDIR+’\11.vbs’)) {

 echo “Borrando $env:WINDIR\11.vbs” ;

 rm $env:WINDIR\11.vbs

}

if ([System.IO.File]::Exists($env:WINDIR+’\info.vbs’)) {

 echo “Borrando $env:WINDIR\info.vbs” ;

 rm $env:WINDIR\info.vbs

}

schtasks /DELETE /TN sysupdater0 /F

Though this removes traces of malware from the system, it is advisable to examine it in

greater depth in search for signs of intrusion, since it is not known whether the attack has

had effects beyond the installation of WannaMine.

 WANNAMINE ANALYSIS STUDY 35 TLP:WHITE

TLP:

WHITE

TLP:WHITE

5. Conclusion

After analysing the sample, it was possible to identify the family to which it belongs, besides

understanding the nature of its behaviour and its main functionalities, which include its

persistence, lateral movement, remote execution, exploitation of the Eternal Blue

vulnerability and the various cryptocurrency mining methods.

A way is also provided to clean the system affected by this malware, as well as various

identifiers of compromise with which to prevent and/or locate other samples in this family.

 WANNAMINE ANALYSIS STUDY 36 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Appendix 1: Indicators of Compromise (IOC)

6.1. URL and URis:

Download URL for PowerShell droppers (malicious):

sjjjv.xyz

profetestruec.net

winupdate.firewall-gateway.de

45.140.88.145

205.209.152.78

Mining pools (non-malicious URLs that are nevertheless valid for detecting cryptocurrency

miners):

xmr-eu1.nanopool.org:14444

xmr-asia1.nanopool.org:14444

xmr-eu2.nanopool.org:14444

pool.supportxmr.com:80

xmr-us-east1.nanopool.org:14444

xmr-us-west1.nanopool.org:14444

pool.minexmr.com:80

sg.minexmr.com:80

ca.minexmr.com:80

URIs:

/dn6

/dn3

/in3.ps1

/int6.ps1

/in6.ps1

/info.vbs

6.2. Files and paths

%windir%\system32\WindowsPowerShell\v1.0\WinRing0x64.sys

 WANNAMINE ANALYSIS STUDY 37 TLP:WHITE

TLP:

WHITE

TLP:WHITE

%windir%\syswow\WindowsPowerShell\v1.0\WinRing0x64.sys

%windir%\system32\mui.exe

%windir%\syswow\mui.exe

%windir%\11.vbs

%windir%\info.vbs

%windir%\temp\sysupdater0.bat

6.3. Hashes

Artifact int6.ps1

MD5 3b8e4705bbc806b8e5962efe39a35f66

SHA1 601daafe2b7725a46520580fa18d0c1103af00f2

SHA256 88b7f7517d70ae282a17bff20382599566cc4ff14492f18158fd4a9285ef89ff

Artifact “funs”

MD5 b2de128c2f70dc74cc25680bc6ac9a94

SHA1 9739ff09665d32dd09a73c25fdbb3e4538ab26a0

SHA256 e27b534c2d296ce0e987bf3d0a0bb13a9d252c81b5ae7557e36368ba560c6f4f

Artifact “mimi”

MD5 0367064d9585cc5c8b8eff127d9565d0

SHA1 784720bab9106e47c5b34d7f0fa12d1388fe1f9d

SHA256 d82889279c771f362f870a5f896fc435790cbd0b587e86efcd4164570ce12a72

Artifact “mon”

MD5 91ff884cff84cb44fb259f5caa30e066

SHA1 c68e4d9bc773cfef0c84c4a33d94f8217b12cb8b

SHA256 5a0ec41eb3f2473463b869c637aa93fac7d97faf0a8169bd828de07588bd2967

Artifact WinRing0x64.sys

MD5 0c0195c48b6b8582fa6f6373032118da

 WANNAMINE ANALYSIS STUDY 38 TLP:WHITE

TLP:

WHITE

TLP:WHITE

SHA1 d25340ae8e92a6d29f599fef426a2bc1b5217299

SHA256 11bd2c9f9e2397c9a16e0990e4ed2cf0679498fe0fd418a3dfdac60b5c160ee5

Artifact mue.exe

MD5 d1aed5a1726d278d521d320d082c3e1e

SHA1 efdb3916c2a21f75f1ad53b6c0ccdf90fde52e44

SHA256 0a1cdc92bbb77c897723f21a376213480fd3484e45bda05aa5958e84a7c2edff

Artifact Payload contenido en mue.exe

MD5 c467df0639ffa846dbbb6fc8db1c1020

SHA1 41bb5b29c9c5ede666c84e58aaf99ed7b48706ee

SHA256 c62f502d9a90eae7222e4402c5c63cb91180675ea0b9877dee6a845f1ee59f2a

Artifact sc

MD5 25ada18486a82950bf71ade22bc26446

SHA1 94507ad582d158c36536c24591c9ed09c90592e0

SHA256 30a1cb62beea2b65e888b76ac01fe832de85e7ac6ff5b6c093b7e8892e4fe2e4

6.4. System settings

The existence of the following WMI objects (Event Consumers, Event Filters,

ConsumertoBindings and WMI classes) also indicates the machine is infected:

SCM Event8 Log Consumer

SCM Event8 Log Consumer2

SCM Event8 Log Filter

SCM Event8 Log Filter2

systemcore_Updater8

They can be checked with the following PowerShell instructions:

Get-WMIObject -Namespace root\subscription -Class __FilterToConsumerBinding -

Filter “__Path LIKE '%SCM Event8 Log Consumer%'’'

Get-WMIObject -Namespace root\subscription -Class __EventFilter -filter “Name LIKE

'%SCM Event8 Log Filter%'’'

 WANNAMINE ANALYSIS STUDY 39 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Get-WMIObject -Namespace root\subscription -Class CommandLineEventConsumer -

Filter ('Name like '%SCM Event8 Log Consumer%'')

Get-WMIObject -Namespace root\default -List | where {$_.Name –eq

'systemcore_Updater8'}

6.5. Yara rules

rule RULE_ETERNALBLUE_GENERIC_SHELLCODE

{

 meta:

 description = "Detecta una shellcode genérica de EternalBlue, con payload

variable"

 created = "08/02/2020 16:55:00"

 author = "INCIBE-CERT"

 version = "1.0"

 strings:

 $sc = { 31 c0 40 0f 84 ?? ?? ?? ?? 60 e8 00 00 00 00 5b e8 23 00 00 00 b9

76 01 00 00 0f 32 8d 7b 39 39 }

 condition:

 all of them

}

rule RULE_XMRIG

{

 meta:

 description = "Minero XMRig"

 created = "02/05/2020 13:26:00"

 author = "INCIBE-CERT"

 version = "1.0"

 strings:

 $xmrig = “xmrig”

 $randomx = “randomx”

 condition:

 uint16(0) == 0x5A4D and

 all of them

}

 WANNAMINE ANALYSIS STUDY 40 TLP:WHITE

TLP:

WHITE

TLP:WHITE

6.6. Monero Wallets involved in Cryptojacking attacks

46fWRc6YzftENCetJsN8zYM1EUb6ziekK8ykrZTL4AWDZ94NwkSCRTAD8MLtqwgjKP

6dRv9uSpHt7jjmdfbG7HpdCp5nhUW

46gVfDm99aq9JqESFxXFp5AyFCZPHsbTn48dWAtVASddf4TmhQMkxvQadhKPvAjszJ

V8cQKVHHLQ7WpNrh33ogkGUPHhpVP

TLP: WHITE

TLP:WHITE

	LIST OF FIGURES
	1. About this study
	2. Organisation of the document
	3. Introduction
	4. Technical report
	4.1. General Information
	4.1.1. int6.ps1
	4.1.2. “funs”
	4.1.3. “mimi”: Mimikatz
	4.1.4. “mon”: XMRig miner
	4.1.5. WinRing0x64.sys
	4.1.6. mue.exe
	4.1.7. Payload 2: Alternative XMRig miner
	4.1.8. “sc”: EternalBlue Shellcode

	4.2. Summary of actions
	4.3. Detailed analysis
	4.4. Persistence
	4.5. Lateral movement
	4.5.1. Remote execution with WMI
	4.5.2. Remote execution with Samba
	4.5.3. Eternal Blue

	4.6. Cryptocurrency mining
	4.6.1. Method 1
	4.6.2. Method 2

	4.7. System cleaning

	5. Conclusion
	Appendix 1: Indicators of Compromise (IOC)
	6.
	6.1. URL and URis:
	6.2. Files and paths
	6.3. Hashes
	6.4. System settings
	6.5. Yara rules
	6.6. Monero Wallets involved in Cryptojacking attacks

