

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO DE ASUNTOS ECONÓMICOS Y TRANSFORMACIÓN DIGITAL

secretaría de estado de digitalización e inteligencia artificial

Webinar: Linux hardening basic Exercises

INDEX

1. Practical Exercise	3
2. Research Investigation	5
FRAME INDEX	

Frame 1	1 Sudo configuration	5
---------	----------------------	---

1. PRACTICAL EXERCISE

The objective of the exercise is to configure the boot and firewall of a server with the default installation.

The following configuration is required for the startup:

The server must ask for a password to start.

Firewall setup:

- Deny all incoming and outgoing traffic.
- Allow incoming traffic to DNS, HTTP, HTTPS, SNMP and SSH services.
- Allow outgoing traffic to DNS and SYSLOG services.

Resolution of the exercise:

To configure the boot, first create a password hash with the command:

grub-mkpasswd-pbkdf2

Requests a password, enter for example "*iPSK=BZ]aav*EI^N*" and it returns a string.

The output of the command would be a string like the following:

Enter password:

Reenter password:

 PBKDF2
 hash
 of
 your
 password
 is

 grub.pbkdf2.sha512.10000.FB11E8E745C23174644A5A14726ABA1883A296AB181DEFA
 33055AE739B44D91022D7EB5CDF4A2B5568EF0959220319C1BD2BB82E6D760BA84D55F95

 CFDBCA86E.D23381F3EEB6E7B1F19230DFDBA2209EA0551365B13A36711CC1079E36A3D0
 1494DC796BD5F6D94057E1A72FD629D5BA567A47343D985246667584BE45427FB3

Create and edit the file /etc/grub.d/init-pwd and add the following lines:

cat <<EOF

set superusers="root"

password_pbkdf2

root

grub.pbkdf2.sha512.10000.FB11E8E745C23174644A5A14726ABA1883A296AB181DEFA 33055AE739B44D91022D7EB5CDF4A2B5568EF0959220319C1BD2BB82E6D760BA84D55F95 CFDBCA86E.D23381F3EEB6E7B1F19230DFDBA2209EA0551365B13A36711CC1079E36A3D0 1494DC796BD5F6D94057E1A72FD629D5BA567A47343D985246667584BE45427FB3

EOF

Save and we give you execution permits:

chmod +x /etc/grub.d/init-pwd

To configure the FW, to deny all traffic we must execute the following commands:

ufw default deny incoming

ufw default deny outgoing ufw default deny routed To enable services on the server: DNS, HTTP, HTTPS, SNMP and SSH ufw allow in 53/tcp para DNS ufw allow in 53/udp para DNS ufw allow in 80/tcp para HTTP ufw allow in 443/tcp para HTTPS ufw allow in 161/udp para SNMP ufw allow in 22/tcp para SSH And finally to enable access to DNS and SYSLOG services: ufw allow out to any port 53 ufw allow out to any port 514

2. RESEARCH INVESTIGATION

Given the following sudo configuration file, the basic user incibe would have root permissions to execute only the command */usr/bin/vim*. Could the user incibe obtain a command console as *root* and execute any command as such? If possible, what measures should be taken to avoid this type of vulnerability?

```
# User privilege specification
root ALL=(ALL:ALL) ALL
incibe ALL=(ALL:ALL) /usr/bin/vim
# Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL
# Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL
```

Frame 1 Sudo configuration

Hint: Review options for the /usr/bin/vim command

Resolution of the exercise:

The user incibe has permissions to execute the binary */usr/bin/vim* with elevation of privileges. "Vim" is a text editor that allows the option to execute a command console from it. To do this, execute the command:

sudo /usr/bin/vim prueba.txt

Once in the text editor we run:

sh

And we get a command console as root.

Another option is to edit the file /etc/shadow with:

sudo /usr/bin/vim /etc/shadow

And directly change the root password, elevate privileges with your and get interactive console with the *root* user.

To avoid these types of vulnerabilities, you should always ensure that the command or commands that you allow a user to execute as *root*, does not allow you to obtain dynamic *shells* or a parameter that allows you to execute commands, or edit sensitive system files.