
Webinar 5 "Use of OWASP ZAP"

Exercises

Webinar 5 "Use of OWASP ZAP". Exercises Page 2 of 14

INDEX

1. Practical Exercise ... 3

2. Research Exercise ... 7

2.1. What type of vulnerability has been identified? .. 11

2.2. What kind of implications does it have? ... 11

2.3. How would you address the vulnerability? ... 12

3. Additional exercise .. 13

FIGURE INDEX

Figure 1 – Proxy settings .. 3
Figure 2 – Web browsing of the local "test" host .. 4
Figure 3 – HTTP Headers .. 4
Figure 4 – Request log ... 5
Figure 5 – POST Request form .. 5
Figure 6 – Warning about lacks of CSRF token ... 6
Figure 7 – bWAPP deployment .. 7
Figure 8 – bWAPP login ... 7
Figure 9 – Challenge: OS Command Injection (I) .. 8
Figure 10 – Challenge: OS Command Injection (II) ... 8
Figure 11 – POST Request .. 9
Figure 12 – nslookup output seems similar to server config .. 9
Figure 13 – Breakpoint ... 10
Figure 14 – Modification of the target parameter ... 10
Figure 15 – Confirmation of injection ... 10
Figure 16 – Source code (commandi.php) ... 11
Figure 17 – Bind shell with netcat .. 12
Figure 18 – Downloading dictionaries .. 13
Figure 19 – Adding new dictionaries .. 13
Figure 20 – Adding new dictionaries .. 14
Figure 21 – Identification of the configuration file "config.inc” .. 14

Webinar 5 "Use of OWASP ZAP". Exercises Page 3 of 14

1. PRACTICAL EXERCISE

Learning HTTP communications in the bWAPP application using a passive approach

from a Kali Linux distribution.

The objective of this exercise is to familiarize the student with the configuration of OWASP

ZAP for HTTP traffic analysis and to study the communications used with a local domain.

The host "test" will serve as a support; we will study the type of parameters sent and

received, the method used, the location of web forms, etc. The student will use a passive

approach, without using any of the attack features available in OWASP ZAP.

Let's configure the browser proxy to use the localhost address on port 8080. Be sure to

select the "Use this proxy server for all protocols" option to include possible SSL traffic in

that setting.

Figure 1 – Proxy settings

After setting the proxy, you will navigate to the http://test/app/bWAPP/login.php host and

verify that OWASP ZAP collects all requests.

http://test/app/bWAPP/login.php

Webinar 5 "Use of OWASP ZAP". Exercises Page 4 of 14

Figure 2 – Web browsing of the local "test" host

From now on we can study the type of traffic exchanged between the browser and the local

host, as well as the technologies used by the same.

For example, we can immediately observe some of the HTTP security headers used by the

web server.

Figure 3 – HTTP Headers

Some of these headers (https://owasp.org/www-project-secure-headers/), such as the use

of X-XSS-Protection, would make XSS-type attacks difficult by activating certain filters in

the browser. Similarly, the X-Content-Type-Options header would make it possible to

prevent certain types of attacks as a result of "content sniffing" carried out by the browser

(http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf). It is recommended that

http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf

Webinar 5 "Use of OWASP ZAP". Exercises Page 5 of 14

the student researches and understands the use of these headers for a better

understanding of concepts related to web security. In this aspect, the OWASP (Open Web

Application Security Project) is one of the best starting points for understanding the basic

pillars of web security.

Continuing with the analysis of the host "test", in the information window (History tab) you

can see, the type of resources requested when accessing the main URL: CSS, JavaScript,

etc.

Figure 4 – Request log

Although most of the resources are requested via the web, we can also filter by POST

methods to locate entry parameters of interest. For example, the following image shows the

information submitted when using one of the web search engines. If we had the

corresponding authorization to do a security audit, it would be interesting to test several

payloads with these parameters (by means of the fuzzing functionality) to corroborate if they

are susceptible to any vulnerability.

Figure 5 – POST Request form

Webinar 5 "Use of OWASP ZAP". Exercises Page 6 of 14

As we browse, we will frequently check the alert window to see if ZAP has detected any

security issues. In the following image, for example, it informs us that a form without a CSRF

token has been detected (https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html). In this case, however, the alert

does not represent any danger since the form is not related to the execution of potentially

harmful actions or the sending of critical information.

Figure 6 – Warning about lacks of CSRF token

By carefully studying the requests intercepted by ZAP we will be able to reconstruct the

technologies used by the service. We will also be able to identify the entries that are likely

to be vulnerable. Remember, however, that active scanning or using any of the attack

features available in ZAP requires the appropriate authorization, otherwise a crime could

be committed.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Webinar 5 "Use of OWASP ZAP". Exercises Page 7 of 14

2. RESEARCH EXERCISE

The objective of the exercise is to investigate the HTTP traffic used by a certain web portal

and try to take advantage, if possible, of a vulnerability in one of its parameters. Because

this type of testing requires prior authorization from the domain owner, a web service will

be installed on a Kali instead, and the testing will be performed locally.

To proceed with the installation, download the attached bWAPP.zip file and unzip its

contents into the /var/www/ directory. Then follow the instructions described in the

INSTALL.txt file.

Figure 7 – bWAPP deployment

After installation verify that you have access to the web platform from your browser and that

it is correctly configured to use ZAP as a web proxy.

Figure 8 – bWAPP login

Webinar 5 "Use of OWASP ZAP". Exercises Page 8 of 14

Then authenticate yourself to the portal using your default credentials (if these have not

been changed):

 Login: bee

 Password: bug

Once authenticated, choose the type of bug¸ "OS Command Injection" and press the Hack

button.

Figure 9 – Challenge: OS Command Injection (I)

The user will find the following web portal where he will have to audit, using ZAP, if any of

the parameters used are vulnerable. He will also have to describe the type of vulnerability

found, its implications and how it would be solved. Students will not be able to use active

scanning or any of the attack functions implemented in ZAP (this includes: Spider, fuzzing,

predefined navigation, etc.). Only a manual approach can be used to improve their skills in

using OWASP ZAP. After correctly identifying the vulnerability, students will be able to study

the source code of the vulnerable script.

Figure 10 – Challenge: OS Command Injection (II)

Webinar 5 "Use of OWASP ZAP". Exercises Page 9 of 14

Exercise solution:

If you analyze the sent request when you press the "Lookup" button, you can see that the

input field (by default, the value www.nsa.gov) is sent via POST with the parameter target.

Figure 11 – POST Request

Note that the result returned by the server matches the output generated by the nslookup

command:

Figure 12 – nslookup output seems similar to server config

Everything seems to indicate that the web server is using the value sent by the target

parameter to run it in the console and return the generated output. What would happen if

instead of sending the domain we add a second command in the input? For example, the

command: ;ls

To modify this argument on the fly, we will use the break points described in the course,

with which we can "stop" the web request before it is sent to the web service.

www.nsa.gov

Webinar 5 "Use of OWASP ZAP". Exercises Page 10 of 14

Figure 13 – Breakpoint

After creating the breakpoint we'll click on the "Lookup" button again and replace the content

of the "target" parameter with the following string:

Figure 14 – Modification of the target parameter

Note that this would execute the command: nslookup www.nsa.gov;ls (in Linux the ';'

character allows concatenation of several commands). After forwarding the request to the

destination, we can see that we have indeed managed to recover the list of files on the

server, which would confirm the type of vulnerability.

Figure 15 – Confirmation of injection

Webinar 5 "Use of OWASP ZAP". Exercises Page 11 of 14

With this information we can answer the following questions:

2.1. What type of vulnerability has been identified?

The vulnerability corresponds to a command injection: as described by OWASP

(https://owasp.org/www-community/attacks/Command_Injection), this type of attack:

"is possible when an application passes insecure data provided by the user (forms, cookies,

HTTP headers, etc.) to a system shell. In this attack, the operating system commands

provided by the attacker are usually executed with the privileges of the vulnerable

application. Command injection attacks are possible largely due to insufficient input

validation".

If we access the web directory and open the script commandi.php we can corroborate that

the script is invoking the nslookup command through the insecure function shell_exec

(https://www.php.net/manual/es/function.shell-exec.php) without applying any kind of

validation or filter to the target parameter.

Figure 16 – Source code (commandi.php)

2.2. What kind of implications does it have?

An attacker could execute all sorts of commands and thus completely compromise the web

server. For example, if instead of executing an "ls" the attacker had executed "nc -l -p 2222

-c /bin/bash" he would install a bind shell as a backdoor.

https://owasp.org/www-community/attacks/Command_Injection
https://www.php.net/manual/es/function.shell-exec.php

Webinar 5 "Use of OWASP ZAP". Exercises Page 12 of 14

Figure 17 – Bind shell with netcat

2.3. How would you address the vulnerability?

 We recommend using the guidelines described by the OWAS project

(https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defens

e_Cheat_Sheet.html).

These countermeasures are summarized in:

 Avoid directly invoking commands.

 Escape and filter the values provided to the commands.

 Parameterization along with proper validation of input parameters.

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html

Webinar 5 "Use of OWASP ZAP". Exercises Page 13 of 14

3. ADDITIONAL EXERCISE

Taking advantage of the installation of the local web service used in the previous research

section, in this exercise users will learn how to add new dictionaries to ZAP for the

discovery of new web resources.

A repository of special interest for this exercise is the project at Github Fuzzdb since it

gathers many dictionaries within the predictable-filepaths directory

(https://github.com/fuzzdb-project/fuzzdb/tree/master/discovery/predictable-filepaths) for

many web technologies; for example, for CMS (Drupal, Joomla, WordPress, etc.), login

files commonly used for different platforms, etc.

If we want to make use of these dictionaries we can either download them manually from

Github or clone the whole repository locally.

Figure 18 – Downloading dictionaries

Later, if we want to add some of these dictionaries to ZAP, to be able to be used with the

functionality "Predefined navigation", we will go to the menu "Tools -> Options" and later we

will select the dictionary that we want (in the following image the raft-large-directories.txt

dictionary has been selected). Note that from this menu we can also configure if we want to

include file navigation, the extensions we want to include and other performance related

parameters, for example, the number of threads to use. If we want to integrate more

dictionaries we will repeat the same process.

Figure 19 – Adding new dictionaries

https://github.com/fuzzdb-project/fuzzdb/tree/master/discovery/predictable-filepaths

Webinar 5 "Use of OWASP ZAP". Exercises Page 14 of 14

Once the dictionaries are added, we will select the resource from which we want to discover

new directories and, by right clicking, we will select the option "Defined navigation directory"

within the Attack menu. Notice that in the lower window the previously added dictionaries

will appear and we will be able to select any of them.

Figure 20 – Adding new dictionaries

As detailed in the webinar, the discovery of directories and files through the "Predefined

Navigation" functionality is very useful for identifying unreferenced resources. Sometimes,

these resources allow us to access directories that, by mistake or carelessness, have been

made public and that offer information about the platform, technologies used or any other

type of sensitive data about the configuration of the web service. The following image shows

one of the configuration files identified thanks to one of the dictionaries; the file "config.inc"

located in the root directory. Note that it includes access credentials to a certain database.

Figure 21 – Identification of the configuration file "config.inc”

	INDEX
	Figure index
	1. Practical Exercise
	2. Research Exercise
	2.1. What type of vulnerability has been identified?
	2.2. What kind of implications does it have?
	2.3. How would you address the vulnerability?

	3. Additional exercise

