Vulnerabilities

With the aim of informing, warning and helping professionals with the latest security vulnerabilities in technology systems, we have made a database available for users interested in this information, which is in Spanish and includes all of the latest documented and recognised vulnerabilities.

This repository, with over 75,000 registers, is based on the information from the NVD (National Vulnerability Database) – by virtue of a partnership agreement – through which INCIBE translates the included information into Spanish.

On occasions this list will show vulnerabilities that have still not been translated, as they are added while the INCIBE team is still carrying out the translation process. The CVE  (Common Vulnerabilities and Exposures) Standard for Information Security Vulnerability Names is used with the aim to support the exchange of information between different tools and databases.

All vulnerabilities collected are linked to different information sources, as well as available patches or solutions provided by manufacturers and developers. It is possible to carry out advanced searches, as there is the option to select different criteria to narrow down the results, some examples being vulnerability types, manufacturers and impact levels, among others.

Through RSS feeds or Newsletters we can be informed daily about the latest vulnerabilities added to the repository. Below there is a list, updated daily, where you can discover the latest vulnerabilities.

CVE-2021-29564

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
20/05/2021

CVE-2021-29565

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
20/05/2021

CVE-2021-29555

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/05/2021

CVE-2021-29557

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/05/2021

CVE-2021-29559

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/05/2021

CVE-2021-29561

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/05/2021

CVE-2021-29562

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/05/2021

CVE-2021-29560

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
25/04/2022

CVE-2021-29558

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
26/07/2021

CVE-2021-29571

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
26/07/2021

CVE-2021-29566

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
26/07/2021

CVE-2021-29563

Publication date:
14/05/2021
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
27/07/2021