Vulnerabilities

With the aim of informing, warning and helping professionals with the latest security vulnerabilities in technology systems, we have made a database available for users interested in this information, which is in Spanish and includes all of the latest documented and recognised vulnerabilities.

This repository, with over 75,000 registers, is based on the information from the NVD (National Vulnerability Database) – by virtue of a partnership agreement – through which INCIBE translates the included information into Spanish.

On occasions this list will show vulnerabilities that have still not been translated, as they are added while the INCIBE team is still carrying out the translation process. The CVE  (Common Vulnerabilities and Exposures) Standard for Information Security Vulnerability Names is used with the aim to support the exchange of information between different tools and databases.

All vulnerabilities collected are linked to different information sources, as well as available patches or solutions provided by manufacturers and developers. It is possible to carry out advanced searches, as there is the option to select different criteria to narrow down the results, some examples being vulnerability types, manufacturers and impact levels, among others.

Through RSS feeds or Newsletters we can be informed daily about the latest vulnerabilities added to the repository. Below there is a list, updated daily, where you can discover the latest vulnerabilities.

CVE-2025-38241

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix softlockup with mTHP swapin Following softlockup can be easily reproduced on my test machine with: echo always > /sys/kernel/mm/transparent_hugepage/hugepages-64kB/enabled swapon /dev/zram0 # zram0 is a 48G swap device mkdir -p /sys/fs/cgroup/memory/test echo 1G > /sys/fs/cgroup/test/memory.max echo $BASHPID > /sys/fs/cgroup/test/cgroup.procs while true; do dd if=/dev/zero of=/tmp/test.img bs=1M count=5120 cat /tmp/test.img > /dev/null rm /tmp/test.img done Then after a while: watchdog: BUG: soft lockup - CPU#0 stuck for 763s! [cat:5787] Modules linked in: zram virtiofs CPU: 0 UID: 0 PID: 5787 Comm: cat Kdump: loaded Tainted: G L 6.15.0.orig-gf3021d9246bc-dirty #118 PREEMPT(voluntary)· Tainted: [L]=SOFTLOCKUP Hardware name: Red Hat KVM/RHEL-AV, BIOS 0.0.0 02/06/2015 RIP: 0010:mpol_shared_policy_lookup+0xd/0x70 Code: e9 b8 b4 ff ff 31 c0 c3 cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 41 54 55 53 8b 1f 48 85 db 74 41 4c 8d 67 08 48 89 fb 48 89 f5 4c 89 e7 e8 RSP: 0018:ffffc90002b1fc28 EFLAGS: 00000202 RAX: 00000000001c20ca RBX: 0000000000724e1e RCX: 0000000000000001 RDX: ffff888118e214c8 RSI: 0000000000057d42 RDI: ffff888118e21518 RBP: 000000000002bec8 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000bf4 R11: 0000000000000000 R12: 0000000000000001 R13: 00000000001c20ca R14: 00000000001c20ca R15: 0000000000000000 FS: 00007f03f995c740(0000) GS:ffff88a07ad9a000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f03f98f1000 CR3: 0000000144626004 CR4: 0000000000770eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: shmem_alloc_folio+0x31/0xc0 shmem_swapin_folio+0x309/0xcf0 ? filemap_get_entry+0x117/0x1e0 ? xas_load+0xd/0xb0 ? filemap_get_entry+0x101/0x1e0 shmem_get_folio_gfp+0x2ed/0x5b0 shmem_file_read_iter+0x7f/0x2e0 vfs_read+0x252/0x330 ksys_read+0x68/0xf0 do_syscall_64+0x4c/0x1c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f03f9a46991 Code: 00 48 8b 15 81 14 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8 20 ad 01 00 f3 0f 1e fa 80 3d 35 97 10 00 00 74 13 31 c0 0f 05 3d 00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec RSP: 002b:00007fff3c52bd28 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007f03f9a46991 RDX: 0000000000040000 RSI: 00007f03f98ba000 RDI: 0000000000000003 RBP: 00007fff3c52bd50 R08: 0000000000000000 R09: 00007f03f9b9a380 R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000 R13: 00007f03f98ba000 R14: 0000000000000003 R15: 0000000000000000 The reason is simple, readahead brought some order 0 folio in swap cache, and the swapin mTHP folio being allocated is in conflict with it, so swapcache_prepare fails and causes shmem_swap_alloc_folio to return -EEXIST, and shmem simply retries again and again causing this loop. Fix it by applying a similar fix for anon mTHP swapin. The performance change is very slight, time of swapin 10g zero folios with shmem (test for 12 times): Before: 2.47s After: 2.48s [kasong@tencent.com: add comment]
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-38244

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when reconnecting channels Fix cifs_signal_cifsd_for_reconnect() to take the correct lock order and prevent the following deadlock from happening ====================================================== WARNING: possible circular locking dependency detected 6.16.0-rc3-build2+ #1301 Tainted: G S W ------------------------------------------------------ cifsd/6055 is trying to acquire lock: ffff88810ad56038 (&tcp_ses->srv_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x134/0x200 but task is already holding lock: ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&ret_buf->chan_lock){+.+.}-{3:3}: validate_chain+0x1cf/0x270 __lock_acquire+0x60e/0x780 lock_acquire.part.0+0xb4/0x1f0 _raw_spin_lock+0x2f/0x40 cifs_setup_session+0x81/0x4b0 cifs_get_smb_ses+0x771/0x900 cifs_mount_get_session+0x7e/0x170 cifs_mount+0x92/0x2d0 cifs_smb3_do_mount+0x161/0x460 smb3_get_tree+0x55/0x90 vfs_get_tree+0x46/0x180 do_new_mount+0x1b0/0x2e0 path_mount+0x6ee/0x740 do_mount+0x98/0xe0 __do_sys_mount+0x148/0x180 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (&ret_buf->ses_lock){+.+.}-{3:3}: validate_chain+0x1cf/0x270 __lock_acquire+0x60e/0x780 lock_acquire.part.0+0xb4/0x1f0 _raw_spin_lock+0x2f/0x40 cifs_match_super+0x101/0x320 sget+0xab/0x270 cifs_smb3_do_mount+0x1e0/0x460 smb3_get_tree+0x55/0x90 vfs_get_tree+0x46/0x180 do_new_mount+0x1b0/0x2e0 path_mount+0x6ee/0x740 do_mount+0x98/0xe0 __do_sys_mount+0x148/0x180 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #0 (&tcp_ses->srv_lock){+.+.}-{3:3}: check_noncircular+0x95/0xc0 check_prev_add+0x115/0x2f0 validate_chain+0x1cf/0x270 __lock_acquire+0x60e/0x780 lock_acquire.part.0+0xb4/0x1f0 _raw_spin_lock+0x2f/0x40 cifs_signal_cifsd_for_reconnect+0x134/0x200 __cifs_reconnect+0x8f/0x500 cifs_handle_standard+0x112/0x280 cifs_demultiplex_thread+0x64d/0xbc0 kthread+0x2f7/0x310 ret_from_fork+0x2a/0x230 ret_from_fork_asm+0x1a/0x30 other info that might help us debug this: Chain exists of: &tcp_ses->srv_lock --> &ret_buf->ses_lock --> &ret_buf->chan_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&ret_buf->chan_lock); lock(&ret_buf->ses_lock); lock(&ret_buf->chan_lock); lock(&tcp_ses->srv_lock); *** DEADLOCK *** 3 locks held by cifsd/6055: #0: ffffffff857de398 (&cifs_tcp_ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x7b/0x200 #1: ffff888119c64060 (&ret_buf->ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x9c/0x200 #2: ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-38247

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: userns and mnt_idmap leak in open_tree_attr(2) Once want_mount_setattr() has returned a positive, it does require finish_mount_kattr() to release ->mnt_userns. Failing do_mount_setattr() does not change that. As the result, we can end up leaking userns and possibly mnt_idmap as well.
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-38248

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: bridge: mcast: Fix use-after-free during router port configuration The bridge maintains a global list of ports behind which a multicast router resides. The list is consulted during forwarding to ensure multicast packets are forwarded to these ports even if the ports are not member in the matching MDB entry. When per-VLAN multicast snooping is enabled, the per-port multicast context is disabled on each port and the port is removed from the global router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 # ip link add name dummy1 up master br1 type dummy # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 1 $ bridge -d mdb show | grep router However, the port can be re-added to the global list even when per-VLAN multicast snooping is enabled: # ip link set dev dummy1 type bridge_slave mcast_router 0 # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement br_multicast_{enable, disable}_port functions"), when per-VLAN multicast snooping is enabled, multicast disablement on a port will disable the per-{port, VLAN} multicast contexts and not the per-port one. As a result, a port will remain in the global router port list even after it is deleted. This will lead to a use-after-free [1] when the list is traversed (when adding a new port to the list, for example): # ip link del dev dummy1 # ip link add name dummy2 up master br1 type dummy # ip link set dev dummy2 type bridge_slave mcast_router 2 Similarly, stale entries can also be found in the per-VLAN router port list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN} contexts are disabled on each port and the port is removed from the per-VLAN router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1 # ip link add name dummy1 up master br1 type dummy # bridge vlan add vid 2 dev dummy1 # bridge vlan global set vid 2 dev br1 mcast_snooping 1 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 0 $ bridge vlan global show dev br1 vid 2 | grep router However, the port can be re-added to the per-VLAN list even when per-VLAN multicast snooping is disabled: # bridge vlan set vid 2 dev dummy1 mcast_router 0 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 When the VLAN is deleted from the port, the per-{port, VLAN} multicast context will not be disabled since multicast snooping is not enabled on the VLAN. As a result, the port will remain in the per-VLAN router port list even after it is no longer member in the VLAN. This will lead to a use-after-free [2] when the list is traversed (when adding a new port to the list, for example): # ip link add name dummy2 up master br1 type dummy # bridge vlan add vid 2 dev dummy2 # bridge vlan del vid 2 dev dummy1 # bridge vlan set vid 2 dev dummy2 mcast_router 2 Fix these issues by removing the port from the relevant (global or per-VLAN) router port list in br_multicast_port_ctx_deinit(). The function is invoked during port deletion with the per-port multicast context and during VLAN deletion with the per-{port, VLAN} multicast context. Note that deleting the multicast router timer is not enough as it only takes care of the temporary multicast router states (1 or 3) and not the permanent one (2). [1] BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560 Write of size 8 at addr ffff888004a67328 by task ip/384 [...] Call Trace: dump_stack ---truncated---
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-38245

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: atm: Release atm_dev_mutex after removing procfs in atm_dev_deregister(). syzbot reported a warning below during atm_dev_register(). [0] Before creating a new device and procfs/sysfs for it, atm_dev_register() looks up a duplicated device by __atm_dev_lookup(). These operations are done under atm_dev_mutex. However, when removing a device in atm_dev_deregister(), it releases the mutex just after removing the device from the list that __atm_dev_lookup() iterates over. So, there will be a small race window where the device does not exist on the device list but procfs/sysfs are still not removed, triggering the splat. Let's hold the mutex until procfs/sysfs are removed in atm_dev_deregister(). [0]: proc_dir_entry 'atm/atmtcp:0' already registered WARNING: CPU: 0 PID: 5919 at fs/proc/generic.c:377 proc_register+0x455/0x5f0 fs/proc/generic.c:377 Modules linked in: CPU: 0 UID: 0 PID: 5919 Comm: syz-executor284 Not tainted 6.16.0-rc2-syzkaller-00047-g52da431bf03b #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 RIP: 0010:proc_register+0x455/0x5f0 fs/proc/generic.c:377 Code: 48 89 f9 48 c1 e9 03 80 3c 01 00 0f 85 a2 01 00 00 48 8b 44 24 10 48 c7 c7 20 c0 c2 8b 48 8b b0 d8 00 00 00 e8 0c 02 1c ff 90 0b 90 90 48 c7 c7 80 f2 82 8e e8 0b de 23 09 48 8b 4c 24 28 48 RSP: 0018:ffffc9000466fa30 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817ae248 RDX: ffff888026280000 RSI: ffffffff817ae255 RDI: 0000000000000001 RBP: ffff8880232bed48 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff888076ed2140 R13: dffffc0000000000 R14: ffff888078a61340 R15: ffffed100edda444 FS: 00007f38b3b0c6c0(0000) GS:ffff888124753000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f38b3bdf953 CR3: 0000000076d58000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: proc_create_data+0xbe/0x110 fs/proc/generic.c:585 atm_proc_dev_register+0x112/0x1e0 net/atm/proc.c:361 atm_dev_register+0x46d/0x890 net/atm/resources.c:113 atmtcp_create+0x77/0x210 drivers/atm/atmtcp.c:369 atmtcp_attach drivers/atm/atmtcp.c:403 [inline] atmtcp_ioctl+0x2f9/0xd60 drivers/atm/atmtcp.c:464 do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159 sock_do_ioctl+0x115/0x280 net/socket.c:1190 sock_ioctl+0x227/0x6b0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f38b3b74459 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f38b3b0c198 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f38b3bfe318 RCX: 00007f38b3b74459 RDX: 0000000000000000 RSI: 0000000000006180 RDI: 0000000000000005 RBP: 00007f38b3bfe310 R08: 65732f636f72702f R09: 65732f636f72702f R10: 65732f636f72702f R11: 0000000000000246 R12: 00007f38b3bcb0ac R13: 00007f38b3b0c1a0 R14: 0000200000000200 R15: 00007f38b3bcb03b
Severity CVSS v4.0: Pending analysis
Last modification:
17/07/2025

CVE-2025-38238

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: scsi: fnic: Fix crash in fnic_wq_cmpl_handler when FDMI times out When both the RHBA and RPA FDMI requests time out, fnic reuses a frame to send ABTS for each of them. On send completion, this causes an attempt to free the same frame twice that leads to a crash. Fix crash by allocating separate frames for RHBA and RPA, and modify ABTS logic accordingly. Tested by checking MDS for FDMI information. Tested by using instrumented driver to: - Drop PLOGI response - Drop RHBA response - Drop RPA response - Drop RHBA and RPA response - Drop PLOGI response + ABTS response - Drop RHBA response + ABTS response - Drop RPA response + ABTS response - Drop RHBA and RPA response + ABTS response for both of them
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-38239

Publication date:
09/07/2025
In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix invalid node index On a system with DRAM interleave enabled, out-of-bound access is detected: megaraid_sas 0000:3f:00.0: requested/available msix 128/128 poll_queue 0 ------------[ cut here ]------------ UBSAN: array-index-out-of-bounds in ./arch/x86/include/asm/topology.h:72:28 index -1 is out of range for type 'cpumask *[1024]' dump_stack_lvl+0x5d/0x80 ubsan_epilogue+0x5/0x2b __ubsan_handle_out_of_bounds.cold+0x46/0x4b megasas_alloc_irq_vectors+0x149/0x190 [megaraid_sas] megasas_probe_one.cold+0xa4d/0x189c [megaraid_sas] local_pci_probe+0x42/0x90 pci_device_probe+0xdc/0x290 really_probe+0xdb/0x340 __driver_probe_device+0x78/0x110 driver_probe_device+0x1f/0xa0 __driver_attach+0xba/0x1c0 bus_for_each_dev+0x8b/0xe0 bus_add_driver+0x142/0x220 driver_register+0x72/0xd0 megasas_init+0xdf/0xff0 [megaraid_sas] do_one_initcall+0x57/0x310 do_init_module+0x90/0x250 init_module_from_file+0x85/0xc0 idempotent_init_module+0x114/0x310 __x64_sys_finit_module+0x65/0xc0 do_syscall_64+0x82/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fix it accordingly.
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-3497

Publication date:
09/07/2025
The Linux distribution underlying the Radiflow iSAP Smart Collector (CentOS 7 - VSAP 1.20) is obsolete and reached end of life (EOL) on June 30, 2024. Thus, any unmitigated vulnerability could be exploited to affect this product.
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-3498

Publication date:
09/07/2025
An unauthenticated user with management network access can get and modify the Radiflow iSAP Smart Collector (CentOS 7 - VSAP 1.20) configuration. The device has two web servers that expose unauthenticated REST APIs on the management network (TCP ports 8084 and 8086). An attacker can use these APIs to get access to all system settings, modify the configuration and execute some commands (e.g., system reboot).
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-3499

Publication date:
09/07/2025
The device has two web servers that expose unauthenticated REST APIs on the management network (TCP ports 8084 and 8086). Exploiting OS command injection through these APIs, an attacker can send arbitrary commands that are executed with administrative permissions by the underlying operating system.
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025

CVE-2025-7379

Publication date:
09/07/2025
A security bypass vulnerability allows exploitation via Reverse Tabnabbing, a type of phishing attack where attackers can manipulate the content of the original tab, leading to credential theft and other security risks. This issue affects DataSync Center: from 1.1.0 before 1.1.0.r207, and from 1.2.0 before 1.2.0.r206.
Severity CVSS v4.0: MEDIUM
Last modification:
10/07/2025

CVE-2025-27027

Publication date:
09/07/2025
A user with vpuser credentials that opens an SSH connection to the device, gets a restricted shell rbash that allows only a small list of allowed commands. This vulnerability enables the user to get a full-featured Linux shell, bypassing the rbash restrictions.
Severity CVSS v4.0: Pending analysis
Last modification:
10/07/2025