Vulnerabilities

With the aim of informing, warning and helping professionals with the latest security vulnerabilities in technology systems, we have made a database available for users interested in this information, which is in Spanish and includes all of the latest documented and recognised vulnerabilities.

This repository, with over 75,000 registers, is based on the information from the NVD (National Vulnerability Database) – by virtue of a partnership agreement – through which INCIBE translates the included information into Spanish.

On occasions this list will show vulnerabilities that have still not been translated, as they are added while the INCIBE team is still carrying out the translation process. The CVE  (Common Vulnerabilities and Exposures) Standard for Information Security Vulnerability Names is used with the aim to support the exchange of information between different tools and databases.

All vulnerabilities collected are linked to different information sources, as well as available patches or solutions provided by manufacturers and developers. It is possible to carry out advanced searches, as there is the option to select different criteria to narrow down the results, some examples being vulnerability types, manufacturers and impact levels, among others.

Through RSS feeds or Newsletters we can be informed daily about the latest vulnerabilities added to the repository. Below there is a list, updated daily, where you can discover the latest vulnerabilities.

CVE-2022-50074

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: apparmor: Fix memleak in aa_simple_write_to_buffer() When copy_from_user failed, the memory is freed by kvfree. however the management struct and data blob are allocated independently, so only kvfree(data) cause a memleak issue here. Use aa_put_loaddata(data) to fix this issue.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50075

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: tracing/eprobes: Have event probes be consistent with kprobes and uprobes Currently, if a symbol "@" is attempted to be used with an event probe (eprobes), it will cause a NULL pointer dereference crash. Both kprobes and uprobes can reference data other than the main registers. Such as immediate address, symbols and the current task name. Have eprobes do the same thing. For "comm", if "comm" is used and the event being attached to does not have the "comm" field, then make it the "$comm" that kprobes has. This is consistent to the way histograms and filters work.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50076

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix memory leak on the deferred close xfstests on smb21 report kmemleak as below: unreferenced object 0xffff8881767d6200 (size 64): comm "xfs_io", pid 1284, jiffies 4294777434 (age 20.789s) hex dump (first 32 bytes): 80 5a d0 11 81 88 ff ff 78 8a aa 63 81 88 ff ff .Z......x..c.... 00 71 99 76 81 88 ff ff 00 00 00 00 00 00 00 00 .q.v............ backtrace: [] cifs_close+0x92/0x2c0 [] __fput+0xff/0x3f0 [] task_work_run+0x85/0xc0 [] do_exit+0x5e5/0x1240 [] do_group_exit+0x58/0xe0 [] __x64_sys_exit_group+0x28/0x30 [] do_syscall_64+0x35/0x80 [] entry_SYSCALL_64_after_hwframe+0x46/0xb0 When cancel the deferred close work, we should also cleanup the struct cifs_deferred_close.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50077

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: apparmor: fix reference count leak in aa_pivotroot() The aa_pivotroot() function has a reference counting bug in a specific path. When aa_replace_current_label() returns on success, the function forgets to decrement the reference count of “target”, which is increased earlier by build_pivotroot(), causing a reference leak. Fix it by decreasing the refcount of “target” in that path.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50078

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: tracing/eprobes: Do not allow eprobes to use $stack, or % for regs While playing with event probes (eprobes), I tried to see what would happen if I attempted to retrieve the instruction pointer (%rip) knowing that event probes do not use pt_regs. The result was: BUG: kernel NULL pointer dereference, address: 0000000000000024 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 1847 Comm: trace-cmd Not tainted 5.19.0-rc5-test+ #309 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:get_event_field.isra.0+0x0/0x50 Code: ff 48 c7 c7 c0 8f 74 a1 e8 3d 8b f5 ff e8 88 09 f6 ff 4c 89 e7 e8 50 6a 13 00 48 89 ef 5b 5d 41 5c 41 5d e9 42 6a 13 00 66 90 63 47 24 8b 57 2c 48 01 c6 8b 47 28 83 f8 02 74 0e 83 f8 04 74 RSP: 0018:ffff916c394bbaf0 EFLAGS: 00010086 RAX: ffff916c854041d8 RBX: ffff916c8d9fbf50 RCX: ffff916c255d2000 RDX: 0000000000000000 RSI: ffff916c255d2008 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff916c3a2a0c08 R09: ffff916c394bbda8 R10: 0000000000000000 R11: 0000000000000000 R12: ffff916c854041d8 R13: ffff916c854041b0 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff916c9ea40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000024 CR3: 000000011b60a002 CR4: 00000000001706e0 Call Trace: get_eprobe_size+0xb4/0x640 ? __mod_node_page_state+0x72/0xc0 __eprobe_trace_func+0x59/0x1a0 ? __mod_lruvec_page_state+0xaa/0x1b0 ? page_remove_file_rmap+0x14/0x230 ? page_remove_rmap+0xda/0x170 event_triggers_call+0x52/0xe0 trace_event_buffer_commit+0x18f/0x240 trace_event_raw_event_sched_wakeup_template+0x7a/0xb0 try_to_wake_up+0x260/0x4c0 __wake_up_common+0x80/0x180 __wake_up_common_lock+0x7c/0xc0 do_notify_parent+0x1c9/0x2a0 exit_notify+0x1a9/0x220 do_exit+0x2ba/0x450 do_group_exit+0x2d/0x90 __x64_sys_exit_group+0x14/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Obviously this is not the desired result. Move the testing for TPARG_FL_TPOINT which is only used for event probes to the top of the "$" variable check, as all the other variables are not used for event probes. Also add a check in the register parsing "%" to fail if an event probe is used.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50079

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check correct bounds for stream encoder instances for DCN303 [Why & How] eng_id for DCN303 cannot be more than 1, since we have only two instances of stream encoders. Check the correct boundary condition for engine ID for DCN303 prevent the potential out of bounds access.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50080

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: tee: add overflow check in register_shm_helper() With special lengths supplied by user space, register_shm_helper() has an integer overflow when calculating the number of pages covered by a supplied user space memory region. This causes internal_get_user_pages_fast() a helper function of pin_user_pages_fast() to do a NULL pointer dereference: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 Modules linked in: CPU: 1 PID: 173 Comm: optee_example_a Not tainted 5.19.0 #11 Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 pc : internal_get_user_pages_fast+0x474/0xa80 Call trace: internal_get_user_pages_fast+0x474/0xa80 pin_user_pages_fast+0x24/0x4c register_shm_helper+0x194/0x330 tee_shm_register_user_buf+0x78/0x120 tee_ioctl+0xd0/0x11a0 __arm64_sys_ioctl+0xa8/0xec invoke_syscall+0x48/0x114 Fix this by adding an an explicit call to access_ok() in tee_shm_register_user_buf() to catch an invalid user space address early.
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50063

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: net: dsa: felix: suppress non-changes to the tagging protocol The way in which dsa_tree_change_tag_proto() works is that when dsa_tree_notify() fails, it doesn't know whether the operation failed mid way in a multi-switch tree, or it failed for a single-switch tree. So even though drivers need to fail cleanly in ds->ops->change_tag_protocol(), DSA will still call dsa_tree_notify() again, to restore the old tag protocol for potential switches in the tree where the change did succeeed (before failing for others). This means for the felix driver that if we report an error in felix_change_tag_protocol(), we'll get another call where proto_ops == old_proto_ops. If we proceed to act upon that, we may do unexpected things. For example, we will call dsa_tag_8021q_register() twice in a row, without any dsa_tag_8021q_unregister() in between. Then we will actually call dsa_tag_8021q_unregister() via old_proto_ops->teardown, which (if it manages to run at all, after walking through corrupted data structures) will leave the ports inoperational anyway. The bug can be readily reproduced if we force an error while in tag_8021q mode; this crashes the kernel. echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging echo edsa > /sys/class/net/eno2/dsa/tagging # -EPROTONOSUPPORT Unable to handle kernel NULL pointer dereference at virtual address 0000000000000014 Call trace: vcap_entry_get+0x24/0x124 ocelot_vcap_filter_del+0x198/0x270 felix_tag_8021q_vlan_del+0xd4/0x21c dsa_switch_tag_8021q_vlan_del+0x168/0x2cc dsa_switch_event+0x68/0x1170 dsa_tree_notify+0x14/0x34 dsa_port_tag_8021q_vlan_del+0x84/0x110 dsa_tag_8021q_unregister+0x15c/0x1c0 felix_tag_8021q_teardown+0x16c/0x180 felix_change_tag_protocol+0x1bc/0x230 dsa_switch_event+0x14c/0x1170 dsa_tree_change_tag_proto+0x118/0x1c0
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50064

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: virtio-blk: Avoid use-after-free on suspend/resume hctx->user_data is set to vq in virtblk_init_hctx(). However, vq is freed on suspend and reallocated on resume. So, hctx->user_data is invalid after resume, and it will cause use-after-free accessing which will result in the kernel crash something like below: [ 22.428391] Call Trace: [ 22.428899] [ 22.429339] virtqueue_add_split+0x3eb/0x620 [ 22.430035] ? __blk_mq_alloc_requests+0x17f/0x2d0 [ 22.430789] ? kvm_clock_get_cycles+0x14/0x30 [ 22.431496] virtqueue_add_sgs+0xad/0xd0 [ 22.432108] virtblk_add_req+0xe8/0x150 [ 22.432692] virtio_queue_rqs+0xeb/0x210 [ 22.433330] blk_mq_flush_plug_list+0x1b8/0x280 [ 22.434059] __blk_flush_plug+0xe1/0x140 [ 22.434853] blk_finish_plug+0x20/0x40 [ 22.435512] read_pages+0x20a/0x2e0 [ 22.436063] ? folio_add_lru+0x62/0xa0 [ 22.436652] page_cache_ra_unbounded+0x112/0x160 [ 22.437365] filemap_get_pages+0xe1/0x5b0 [ 22.437964] ? context_to_sid+0x70/0x100 [ 22.438580] ? sidtab_context_to_sid+0x32/0x400 [ 22.439979] filemap_read+0xcd/0x3d0 [ 22.440917] xfs_file_buffered_read+0x4a/0xc0 [ 22.441984] xfs_file_read_iter+0x65/0xd0 [ 22.442970] __kernel_read+0x160/0x2e0 [ 22.443921] bprm_execve+0x21b/0x640 [ 22.444809] do_execveat_common.isra.0+0x1a8/0x220 [ 22.446008] __x64_sys_execve+0x2d/0x40 [ 22.446920] do_syscall_64+0x37/0x90 [ 22.447773] entry_SYSCALL_64_after_hwframe+0x63/0xcd This patch fixes this issue by getting vq from vblk, and removes virtblk_init_hctx().
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50065

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: virtio_net: fix memory leak inside XPD_TX with mergeable When we call xdp_convert_buff_to_frame() to get xdpf, if it returns NULL, we should check if xdp_page was allocated by xdp_linearize_page(). If it is newly allocated, it should be freed here alone. Just like any other "goto err_xdp".
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50066

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: fix aq_vec index out of range error The final update statement of the for loop exceeds the array range, the dereference of self->aq_vec[i] is not checked and then leads to the index out of range error. Also fixed this kind of coding style in other for loop. [ 97.937604] UBSAN: array-index-out-of-bounds in drivers/net/ethernet/aquantia/atlantic/aq_nic.c:1404:48 [ 97.937607] index 8 is out of range for type 'aq_vec_s *[8]' [ 97.937608] CPU: 38 PID: 3767 Comm: kworker/u256:18 Not tainted 5.19.0+ #2 [ 97.937610] Hardware name: Dell Inc. Precision 7865 Tower/, BIOS 1.0.0 06/12/2022 [ 97.937611] Workqueue: events_unbound async_run_entry_fn [ 97.937616] Call Trace: [ 97.937617] [ 97.937619] dump_stack_lvl+0x49/0x63 [ 97.937624] dump_stack+0x10/0x16 [ 97.937626] ubsan_epilogue+0x9/0x3f [ 97.937627] __ubsan_handle_out_of_bounds.cold+0x44/0x49 [ 97.937629] ? __scm_send+0x348/0x440 [ 97.937632] ? aq_vec_stop+0x72/0x80 [atlantic] [ 97.937639] aq_nic_stop+0x1b6/0x1c0 [atlantic] [ 97.937644] aq_suspend_common+0x88/0x90 [atlantic] [ 97.937648] aq_pm_suspend_poweroff+0xe/0x20 [atlantic] [ 97.937653] pci_pm_suspend+0x7e/0x1a0 [ 97.937655] ? pci_pm_suspend_noirq+0x2b0/0x2b0 [ 97.937657] dpm_run_callback+0x54/0x190 [ 97.937660] __device_suspend+0x14c/0x4d0 [ 97.937661] async_suspend+0x23/0x70 [ 97.937663] async_run_entry_fn+0x33/0x120 [ 97.937664] process_one_work+0x21f/0x3f0 [ 97.937666] worker_thread+0x4a/0x3c0 [ 97.937668] ? process_one_work+0x3f0/0x3f0 [ 97.937669] kthread+0xf0/0x120 [ 97.937671] ? kthread_complete_and_exit+0x20/0x20 [ 97.937672] ret_from_fork+0x22/0x30 [ 97.937676] v2. fixed "warning: variable 'aq_vec' set but not used" v3. simplified a for loop
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025

CVE-2022-50067

Publication date:
18/06/2025
In the Linux kernel, the following vulnerability has been resolved: btrfs: unset reloc control if transaction commit fails in prepare_to_relocate() In btrfs_relocate_block_group(), the rc is allocated. Then btrfs_relocate_block_group() calls relocate_block_group() prepare_to_relocate() set_reloc_control() that assigns rc to the variable fs_info->reloc_ctl. When prepare_to_relocate() returns, it calls btrfs_commit_transaction() btrfs_start_dirty_block_groups() btrfs_alloc_path() kmem_cache_zalloc() which may fail for example (or other errors could happen). When the failure occurs, btrfs_relocate_block_group() detects the error and frees rc and doesn't set fs_info->reloc_ctl to NULL. After that, in btrfs_init_reloc_root(), rc is retrieved from fs_info->reloc_ctl and then used, which may cause a use-after-free bug. This possible bug can be triggered by calling btrfs_ioctl_balance() before calling btrfs_ioctl_defrag(). To fix this possible bug, in prepare_to_relocate(), check if btrfs_commit_transaction() fails. If the failure occurs, unset_reloc_control() is called to set fs_info->reloc_ctl to NULL. The error log in our fault-injection testing is shown as follows: [ 58.751070] BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x7ca/0x920 [btrfs] ... [ 58.753577] Call Trace: ... [ 58.755800] kasan_report+0x45/0x60 [ 58.756066] btrfs_init_reloc_root+0x7ca/0x920 [btrfs] [ 58.757304] record_root_in_trans+0x792/0xa10 [btrfs] [ 58.757748] btrfs_record_root_in_trans+0x463/0x4f0 [btrfs] [ 58.758231] start_transaction+0x896/0x2950 [btrfs] [ 58.758661] btrfs_defrag_root+0x250/0xc00 [btrfs] [ 58.759083] btrfs_ioctl_defrag+0x467/0xa00 [btrfs] [ 58.759513] btrfs_ioctl+0x3c95/0x114e0 [btrfs] ... [ 58.768510] Allocated by task 23683: [ 58.768777] ____kasan_kmalloc+0xb5/0xf0 [ 58.769069] __kmalloc+0x227/0x3d0 [ 58.769325] alloc_reloc_control+0x10a/0x3d0 [btrfs] [ 58.769755] btrfs_relocate_block_group+0x7aa/0x1e20 [btrfs] [ 58.770228] btrfs_relocate_chunk+0xf1/0x760 [btrfs] [ 58.770655] __btrfs_balance+0x1326/0x1f10 [btrfs] [ 58.771071] btrfs_balance+0x3150/0x3d30 [btrfs] [ 58.771472] btrfs_ioctl_balance+0xd84/0x1410 [btrfs] [ 58.771902] btrfs_ioctl+0x4caa/0x114e0 [btrfs] ... [ 58.773337] Freed by task 23683: ... [ 58.774815] kfree+0xda/0x2b0 [ 58.775038] free_reloc_control+0x1d6/0x220 [btrfs] [ 58.775465] btrfs_relocate_block_group+0x115c/0x1e20 [btrfs] [ 58.775944] btrfs_relocate_chunk+0xf1/0x760 [btrfs] [ 58.776369] __btrfs_balance+0x1326/0x1f10 [btrfs] [ 58.776784] btrfs_balance+0x3150/0x3d30 [btrfs] [ 58.777185] btrfs_ioctl_balance+0xd84/0x1410 [btrfs] [ 58.777621] btrfs_ioctl+0x4caa/0x114e0 [btrfs] ...
Severity CVSS v4.0: Pending analysis
Last modification:
18/06/2025