Vulnerabilities

With the aim of informing, warning and helping professionals with the latest security vulnerabilities in technology systems, we have made a database available for users interested in this information, which is in Spanish and includes all of the latest documented and recognised vulnerabilities.

This repository, with over 75,000 registers, is based on the information from the NVD (National Vulnerability Database) – by virtue of a partnership agreement – through which INCIBE translates the included information into Spanish.

On occasions this list will show vulnerabilities that have still not been translated, as they are added while the INCIBE team is still carrying out the translation process. The CVE  (Common Vulnerabilities and Exposures) Standard for Information Security Vulnerability Names is used with the aim to support the exchange of information between different tools and databases.

All vulnerabilities collected are linked to different information sources, as well as available patches or solutions provided by manufacturers and developers. It is possible to carry out advanced searches, as there is the option to select different criteria to narrow down the results, some examples being vulnerability types, manufacturers and impact levels, among others.

Through RSS feeds or Newsletters we can be informed daily about the latest vulnerabilities added to the repository. Below there is a list, updated daily, where you can discover the latest vulnerabilities.

CVE-2021-37682

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
19/08/2021

CVE-2021-37678

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
19/08/2021

CVE-2021-37679

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
19/08/2021

CVE-2021-37687

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/08/2021

CVE-2021-37691

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/08/2021

CVE-2021-37683

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/08/2021

CVE-2021-37684

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/08/2021

CVE-2021-37685

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
18/08/2021

CVE-2021-37692

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn't checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version.
Severity CVSS v4.0: Pending analysis
Last modification:
31/08/2021

CVE-2021-37677

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
26/06/2023

CVE-2021-37673

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
19/08/2021

CVE-2021-37669

Publication date:
12/08/2021
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Severity CVSS v4.0: Pending analysis
Last modification:
19/08/2021