Vulnerabilities

With the aim of informing, warning and helping professionals with the latest security vulnerabilities in technology systems, we have made a database available for users interested in this information, which is in Spanish and includes all of the latest documented and recognised vulnerabilities.

This repository, with over 75,000 registers, is based on the information from the NVD (National Vulnerability Database) – by virtue of a partnership agreement – through which INCIBE translates the included information into Spanish.

On occasions this list will show vulnerabilities that have still not been translated, as they are added while the INCIBE team is still carrying out the translation process. The CVE  (Common Vulnerabilities and Exposures) Standard for Information Security Vulnerability Names is used with the aim to support the exchange of information between different tools and databases.

All vulnerabilities collected are linked to different information sources, as well as available patches or solutions provided by manufacturers and developers. It is possible to carry out advanced searches, as there is the option to select different criteria to narrow down the results, some examples being vulnerability types, manufacturers and impact levels, among others.

Through RSS feeds or Newsletters we can be informed daily about the latest vulnerabilities added to the repository. Below there is a list, updated daily, where you can discover the latest vulnerabilities.

CVE-2021-32089

Publication date:
11/05/2021
An issue was discovered on Zebra (formerly Motorola Solutions) Fixed RFID Reader FX9500 devices. An unauthenticated attacker can upload arbitrary files to the filesystem that can then be accessed through the web interface. This can lead to information disclosure and code execution. NOTE: This vulnerability only affects products that are no longer supported by the maintainer
Severity CVSS v4.0: Pending analysis
Last modification:
04/08/2024

CVE-2020-26141

Publication date:
11/05/2021
An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The Wi-Fi implementation does not verify the Message Integrity Check (authenticity) of fragmented TKIP frames. An adversary can abuse this to inject and possibly decrypt packets in WPA or WPA2 networks that support the TKIP data-confidentiality protocol.
Severity CVSS v4.0: Pending analysis
Last modification:
22/04/2022

CVE-2020-26145

Publication date:
11/05/2021
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept second (or subsequent) broadcast fragments even when sent in plaintext and process them as full unfragmented frames. An adversary can abuse this to inject arbitrary network packets independent of the network configuration.
Severity CVSS v4.0: Pending analysis
Last modification:
13/05/2022

CVE-2020-26147

Publication date:
11/05/2021
An issue was discovered in the Linux kernel 5.8.9. The WEP, WPA, WPA2, and WPA3 implementations reassemble fragments even though some of them were sent in plaintext. This vulnerability can be abused to inject packets and/or exfiltrate selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used.
Severity CVSS v4.0: Pending analysis
Last modification:
12/07/2022

CVE-2020-26143

Publication date:
11/05/2021
An issue was discovered in the ALFA Windows 10 driver 1030.36.604 for AWUS036ACH. The WEP, WPA, WPA2, and WPA3 implementations accept fragmented plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration.
Severity CVSS v4.0: Pending analysis
Last modification:
03/12/2021

CVE-2020-26144

Publication date:
11/05/2021
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext A-MSDU frames as long as the first 8 bytes correspond to a valid RFC1042 (i.e., LLC/SNAP) header for EAPOL. An adversary can abuse this to inject arbitrary network packets independent of the network configuration.
Severity CVSS v4.0: Pending analysis
Last modification:
04/12/2021

CVE-2020-26146

Publication date:
11/05/2021
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WPA, WPA2, and WPA3 implementations reassemble fragments with non-consecutive packet numbers. An adversary can abuse this to exfiltrate selected fragments. This vulnerability is exploitable when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used. Note that WEP is vulnerable to this attack by design.
Severity CVSS v4.0: Pending analysis
Last modification:
06/12/2021

CVE-2020-26142

Publication date:
11/05/2021
An issue was discovered in the kernel in OpenBSD 6.6. The WEP, WPA, WPA2, and WPA3 implementations treat fragmented frames as full frames. An adversary can abuse this to inject arbitrary network packets, independent of the network configuration.
Severity CVSS v4.0: Pending analysis
Last modification:
03/12/2021

CVE-2020-26139

Publication date:
11/05/2021
An issue was discovered in the kernel in NetBSD 7.1. An Access Point (AP) forwards EAPOL frames to other clients even though the sender has not yet successfully authenticated to the AP. This might be abused in projected Wi-Fi networks to launch denial-of-service attacks against connected clients and makes it easier to exploit other vulnerabilities in connected clients.
Severity CVSS v4.0: Pending analysis
Last modification:
30/09/2022

CVE-2020-24586

Publication date:
11/05/2021
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data.
Severity CVSS v4.0: Pending analysis
Last modification:
01/04/2023

CVE-2020-24587

Publication date:
11/05/2021
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that all fragments of a frame are encrypted under the same key. An adversary can abuse this to decrypt selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP encryption key is periodically renewed.
Severity CVSS v4.0: Pending analysis
Last modification:
01/04/2023

CVE-2020-26140

Publication date:
11/05/2021
An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration.
Severity CVSS v4.0: Pending analysis
Last modification:
03/09/2022