Instituto Nacional de ciberseguridad. Sección Incibe
Instituto Nacional de Ciberseguridad. Sección INCIBE-CERT

Vulnerabilidades

Con el objetivo de informar, advertir y ayudar a los profesionales sobre las ultimas vulnerabilidades de seguridad en sistemas tecnológicos, ponemos a disposición de los usuarios interesados en esta información una base de datos con información en castellano sobre cada una de las ultimas vulnerabilidades documentadas y conocidas.

Este repositorio con más de 75.000 registros esta basado en la información de NVD (National Vulnerability Database) – en función de un acuerdo de colaboración – por el cual desde INCIBE realizamos la traducción al castellano de la información incluida. En ocasiones este listado mostrará vulnerabilidades que aún no han sido traducidas debido a que se recogen en el transcurso del tiempo en el que el equipo de INCIBE realiza el proceso de traducción.

Se emplea el estándar de nomenclatura de vulnerabilidades CVE (Common Vulnerabilities and Exposures), con el fin de facilitar el intercambio de información entre diferentes bases de datos y herramientas. Cada una de las vulnerabilidades recogidas enlaza a diversas fuentes de información así como a parches disponibles o soluciones aportadas por los fabricantes y desarrolladores. Es posible realizar búsquedas avanzadas teniendo la opción de seleccionar diferentes criterios como el tipo de vulnerabilidad, fabricante, tipo de impacto entre otros, con el fin de acortar los resultados.

Mediante suscripción RSS o Boletines podemos estar informados diariamente de las ultimas vulnerabilidades incorporadas al repositorio.

CVE-2026-23012

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> mm/damon/core: remove call_control in inactive contexts<br /> <br /> If damon_call() is executed against a DAMON context that is not running,<br /> the function returns error while keeping the damon_call_control object<br /> linked to the context&amp;#39;s call_controls list. Let&amp;#39;s suppose the object is<br /> deallocated after the damon_call(), and yet another damon_call() is<br /> executed against the same context. The function tries to add the new<br /> damon_call_control object to the call_controls list, which still has the<br /> pointer to the previous damon_call_control object, which is deallocated. <br /> As a result, use-after-free happens.<br /> <br /> This can actually be triggered using the DAMON sysfs interface. It is not<br /> easily exploitable since it requires the sysfs write permission and making<br /> a definitely weird file writes, though. Please refer to the report for<br /> more details about the issue reproduction steps.<br /> <br /> Fix the issue by making two changes. Firstly, move the final<br /> kdamond_call() for cancelling all existing damon_call() requests from<br /> terminating DAMON context to be done before the ctx-&gt;kdamond reset. This<br /> makes any code that sees NULL ctx-&gt;kdamond can safely assume the context<br /> may not access damon_call() requests anymore. Secondly, let damon_call()<br /> to cleanup the damon_call_control objects that were added to the<br /> already-terminated DAMON context, before returning the error.
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23013

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback<br /> <br /> octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to<br /> ioq_vector. If request_irq() fails part-way, the rollback loop calls<br /> free_irq() with dev_id set to &amp;#39;oct&amp;#39;, which does not match the original<br /> dev_id and may leave the irqaction registered.<br /> <br /> This can keep IRQ handlers alive while ioq_vector is later freed during<br /> unwind/teardown, leading to a use-after-free or crash when an interrupt<br /> fires.<br /> <br /> Fix the error path to free IRQs with the same ioq_vector dev_id used<br /> during request_irq().
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23002

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> lib/buildid: use __kernel_read() for sleepable context<br /> <br /> Prevent a "BUG: unable to handle kernel NULL pointer dereference in<br /> filemap_read_folio".<br /> <br /> For the sleepable context, convert freader to use __kernel_read() instead<br /> of direct page cache access via read_cache_folio(). This simplifies the<br /> faultable code path by using the standard kernel file reading interface<br /> which handles all the complexity of reading file data.<br /> <br /> At the moment we are not changing the code for non-sleepable context which<br /> uses filemap_get_folio() and only succeeds if the target folios are<br /> already in memory and up-to-date. The reason is to keep the patch simple<br /> and easier to backport to stable kernels.<br /> <br /> Syzbot repro does not crash the kernel anymore and the selftests run<br /> successfully.<br /> <br /> In the follow up we will make __kernel_read() with IOCB_NOWAIT work for<br /> non-sleepable contexts. In addition, I would like to replace the<br /> secretmem check with a more generic approach and will add fstest for the<br /> buildid code.
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23003

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv()<br /> <br /> Blamed commit did not take care of VLAN encapsulations<br /> as spotted by syzbot [1].<br /> <br /> Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull().<br /> <br /> [1]<br /> BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]<br /> BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]<br /> BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321<br /> __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]<br /> INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]<br /> IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321<br /> ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729<br /> __ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860<br /> ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903<br /> gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1<br /> ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438<br /> ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489<br /> NF_HOOK include/linux/netfilter.h:318 [inline]<br /> ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500<br /> ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590<br /> dst_input include/net/dst.h:474 [inline]<br /> ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79<br /> NF_HOOK include/linux/netfilter.h:318 [inline]<br /> ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311<br /> __netif_receive_skb_one_core net/core/dev.c:6139 [inline]<br /> __netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252<br /> netif_receive_skb_internal net/core/dev.c:6338 [inline]<br /> netif_receive_skb+0x57/0x630 net/core/dev.c:6397<br /> tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485<br /> tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953<br /> tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999<br /> new_sync_write fs/read_write.c:593 [inline]<br /> vfs_write+0xbe2/0x15d0 fs/read_write.c:686<br /> ksys_write fs/read_write.c:738 [inline]<br /> __do_sys_write fs/read_write.c:749 [inline]<br /> __se_sys_write fs/read_write.c:746 [inline]<br /> __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746<br /> x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2<br /> do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]<br /> do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94<br /> entry_SYSCALL_64_after_hwframe+0x77/0x7f<br /> <br /> Uninit was created at:<br /> slab_post_alloc_hook mm/slub.c:4960 [inline]<br /> slab_alloc_node mm/slub.c:5263 [inline]<br /> kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315<br /> kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586<br /> __alloc_skb+0x805/0x1040 net/core/skbuff.c:690<br /> alloc_skb include/linux/skbuff.h:1383 [inline]<br /> alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712<br /> sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995<br /> tun_alloc_skb drivers/net/tun.c:1461 [inline]<br /> tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794<br /> tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999<br /> new_sync_write fs/read_write.c:593 [inline]<br /> vfs_write+0xbe2/0x15d0 fs/read_write.c:686<br /> ksys_write fs/read_write.c:738 [inline]<br /> __do_sys_write fs/read_write.c:749 [inline]<br /> __se_sys_write fs/read_write.c:746 [inline]<br /> __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746<br /> x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2<br /> do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]<br /> do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94<br /> entry_SYSCALL_64_after_hwframe+0x77/0x7f<br /> <br /> CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none)<br /> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23004

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list()<br /> <br /> syzbot was able to crash the kernel in rt6_uncached_list_flush_dev()<br /> in an interesting way [1]<br /> <br /> Crash happens in list_del_init()/INIT_LIST_HEAD() while writing<br /> list-&gt;prev, while the prior write on list-&gt;next went well.<br /> <br /> static inline void INIT_LIST_HEAD(struct list_head *list)<br /> {<br /> WRITE_ONCE(list-&gt;next, list); // This went well<br /> WRITE_ONCE(list-&gt;prev, list); // Crash, @list has been freed.<br /> }<br /> <br /> Issue here is that rt6_uncached_list_del() did not attempt to lock<br /> ul-&gt;lock, as list_empty(&amp;rt-&gt;dst.rt_uncached) returned<br /> true because the WRITE_ONCE(list-&gt;next, list) happened on the other CPU.<br /> <br /> We might use list_del_init_careful() and list_empty_careful(),<br /> or make sure rt6_uncached_list_del() always grabs the spinlock<br /> whenever rt-&gt;dst.rt_uncached_list has been set.<br /> <br /> A similar fix is neeed for IPv4.<br /> <br /> [1]<br /> <br /> BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline]<br /> BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline]<br /> BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]<br /> BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020<br /> Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450<br /> <br /> CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)}<br /> Tainted: [L]=SOFTLOCKUP<br /> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025<br /> Workqueue: netns cleanup_net<br /> Call Trace:<br /> <br /> dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120<br /> print_address_description mm/kasan/report.c:378 [inline]<br /> print_report+0xca/0x240 mm/kasan/report.c:482<br /> kasan_report+0x118/0x150 mm/kasan/report.c:595<br /> INIT_LIST_HEAD include/linux/list.h:46 [inline]<br /> list_del_init include/linux/list.h:296 [inline]<br /> rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]<br /> rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020<br /> addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853<br /> addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1<br /> notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85<br /> call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]<br /> call_netdevice_notifiers net/core/dev.c:2282 [inline]<br /> netif_close_many+0x29c/0x410 net/core/dev.c:1785<br /> unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353<br /> ops_exit_rtnl_list net/core/net_namespace.c:187 [inline]<br /> ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248<br /> cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696<br /> process_one_work kernel/workqueue.c:3257 [inline]<br /> process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340<br /> worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421<br /> kthread+0x711/0x8a0 kernel/kthread.c:463<br /> ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158<br /> ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246<br /> <br /> <br /> Allocated by task 803:<br /> kasan_save_stack mm/kasan/common.c:57 [inline]<br /> kasan_save_track+0x3e/0x80 mm/kasan/common.c:78<br /> unpoison_slab_object mm/kasan/common.c:340 [inline]<br /> __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366<br /> kasan_slab_alloc include/linux/kasan.h:253 [inline]<br /> slab_post_alloc_hook mm/slub.c:4953 [inline]<br /> slab_alloc_node mm/slub.c:5263 [inline]<br /> kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270<br /> dst_alloc+0x105/0x170 net/core/dst.c:89<br /> ip6_dst_alloc net/ipv6/route.c:342 [inline]<br /> icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333<br /> mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844<br /> mld_send_cr net/ipv6/mcast.c:2154 [inline]<br /> mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693<br /> process_one_work kernel/workqueue.c:3257 [inline]<br /> process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340<br /> worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421<br /> kthread+0x711/0x8a0 kernel/kthread.c:463<br /> ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158<br /> ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr<br /> ---truncated---
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23005

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1<br /> <br /> When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in<br /> response to a guest WRMSR, clear XFD-disabled features in the saved (or to<br /> be restored) XSTATE_BV to ensure KVM doesn&amp;#39;t attempt to load state for<br /> features that are disabled via the guest&amp;#39;s XFD. Because the kernel<br /> executes XRSTOR with the guest&amp;#39;s XFD, saving XSTATE_BV[i]=1 with XFD[i]=1<br /> will cause XRSTOR to #NM and panic the kernel.<br /> <br /> E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV:<br /> <br /> ------------[ cut here ]------------<br /> WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848<br /> Modules linked in: kvm_intel kvm irqbypass<br /> CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE<br /> Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015<br /> RIP: 0010:exc_device_not_available+0x101/0x110<br /> Call Trace:<br /> <br /> asm_exc_device_not_available+0x1a/0x20<br /> RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90<br /> switch_fpu_return+0x4a/0xb0<br /> kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm]<br /> kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]<br /> __x64_sys_ioctl+0x8f/0xd0<br /> do_syscall_64+0x62/0x940<br /> entry_SYSCALL_64_after_hwframe+0x4b/0x53<br /> <br /> ---[ end trace 0000000000000000 ]---<br /> <br /> This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1,<br /> and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler&amp;#39;s<br /> call to fpu_update_guest_xfd().<br /> <br /> and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE:<br /> <br /> ------------[ cut here ]------------<br /> WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867<br /> Modules linked in: kvm_intel kvm irqbypass<br /> CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE<br /> Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015<br /> RIP: 0010:exc_device_not_available+0x101/0x110<br /> Call Trace:<br /> <br /> asm_exc_device_not_available+0x1a/0x20<br /> RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90<br /> fpu_swap_kvm_fpstate+0x6b/0x120<br /> kvm_load_guest_fpu+0x30/0x80 [kvm]<br /> kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm]<br /> kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]<br /> __x64_sys_ioctl+0x8f/0xd0<br /> do_syscall_64+0x62/0x940<br /> entry_SYSCALL_64_after_hwframe+0x4b/0x53<br /> <br /> ---[ end trace 0000000000000000 ]---<br /> <br /> The new behavior is consistent with the AMX architecture. Per Intel&amp;#39;s SDM,<br /> XSAVE saves XSTATE_BV as &amp;#39;0&amp;#39; for components that are disabled via XFD<br /> (and non-compacted XSAVE saves the initial configuration of the state<br /> component):<br /> <br /> If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i,<br /> the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1;<br /> instead, it operates as if XINUSE[i] = 0 (and the state component was<br /> in its initial state): it saves bit i of XSTATE_BV field of the XSAVE<br /> header as 0; in addition, XSAVE saves the initial configuration of the<br /> state component (the other instructions do not save state component i).<br /> <br /> Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using<br /> a constant XFD based on the set of enabled features when XSAVEing for<br /> a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled<br /> features can only happen in the above interrupt case, or in similar<br /> scenarios involving preemption on preemptible kernels, because<br /> fpu_swap_kvm_fpstate()&amp;#39;s call to save_fpregs_to_fpstate() saves the<br /> outgoing FPU state with the current XFD; and that is (on all but the<br /> first WRMSR to XFD) the guest XFD.<br /> <br /> Therefore, XFD can only go out of sync with XSTATE_BV in the above<br /> interrupt case, or in similar scenarios involving preemption on<br /> preemptible kernels, and it we can consider it (de facto) part of KVM<br /> ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features.<br /> <br /> [Move clea<br /> ---truncated---
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23006

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> ASoC: tlv320adcx140: fix null pointer<br /> <br /> The "snd_soc_component" in "adcx140_priv" was only used once but never<br /> set. It was only used for reaching "dev" which is already present in<br /> "adcx140_priv".
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23007

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> block: zero non-PI portion of auto integrity buffer<br /> <br /> The auto-generated integrity buffer for writes needs to be fully<br /> initialized before being passed to the underlying block device,<br /> otherwise the uninitialized memory can be read back by userspace or<br /> anyone with physical access to the storage device. If protection<br /> information is generated, that portion of the integrity buffer is<br /> already initialized. The integrity data is also zeroed if PI generation<br /> is disabled via sysfs or the PI tuple size is 0. However, this misses<br /> the case where PI is generated and the PI tuple size is nonzero, but the<br /> metadata size is larger than the PI tuple. In this case, the remainder<br /> ("opaque") of the metadata is left uninitialized.<br /> Generalize the BLK_INTEGRITY_CSUM_NONE check to cover any case when the<br /> metadata is larger than just the PI tuple.
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23008

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> drm/vmwgfx: Fix KMS with 3D on HW version 10<br /> <br /> HW version 10 does not have GB Surfaces so there is no backing buffer for<br /> surface backed FBs. This would result in a nullptr dereference and crash<br /> the driver causing a black screen.
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23009

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> xhci: sideband: don&amp;#39;t dereference freed ring when removing sideband endpoint<br /> <br /> xhci_sideband_remove_endpoint() incorrecly assumes that the endpoint is<br /> running and has a valid transfer ring.<br /> <br /> Lianqin reported a crash during suspend/wake-up stress testing, and<br /> found the cause to be dereferencing a non-existing transfer ring<br /> &amp;#39;ep-&gt;ring&amp;#39; during xhci_sideband_remove_endpoint().<br /> <br /> The endpoint and its ring may be in unknown state if this function<br /> is called after xHCI was reinitialized in resume (lost power), or if<br /> device is being re-enumerated, disconnected or endpoint already dropped.<br /> <br /> Fix this by both removing unnecessary ring access, and by checking<br /> ep-&gt;ring exists before dereferencing it. Also make sure endpoint is<br /> running before attempting to stop it.<br /> <br /> Remove the xhci_initialize_ring_info() call during sideband endpoint<br /> removal as is it only initializes ring structure enqueue, dequeue and<br /> cycle state values to their starting values without changing actual<br /> hardware enqueue, dequeue and cycle state. Leaving them out of sync<br /> is worse than leaving it as it is. The endpoint will get freed in after<br /> this in most usecases.<br /> <br /> If the (audio) class driver want&amp;#39;s to reuse the endpoint after offload<br /> then it is up to the class driver to ensure endpoint is properly set up.
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23010

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> ipv6: Fix use-after-free in inet6_addr_del().<br /> <br /> syzbot reported use-after-free of inet6_ifaddr in<br /> inet6_addr_del(). [0]<br /> <br /> The cited commit accidentally moved ipv6_del_addr() for<br /> mngtmpaddr before reading its ifp-&gt;flags for temporary<br /> addresses in inet6_addr_del().<br /> <br /> Let&amp;#39;s move ipv6_del_addr() down to fix the UAF.<br /> <br /> [0]:<br /> BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117<br /> Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593<br /> <br /> CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full)<br /> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025<br /> Call Trace:<br /> <br /> __dump_stack lib/dump_stack.c:94 [inline]<br /> dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120<br /> print_address_description mm/kasan/report.c:378 [inline]<br /> print_report+0xcd/0x630 mm/kasan/report.c:482<br /> kasan_report+0xe0/0x110 mm/kasan/report.c:595<br /> inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117<br /> addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181<br /> inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582<br /> sock_do_ioctl+0x118/0x280 net/socket.c:1254<br /> sock_ioctl+0x227/0x6b0 net/socket.c:1375<br /> vfs_ioctl fs/ioctl.c:51 [inline]<br /> __do_sys_ioctl fs/ioctl.c:597 [inline]<br /> __se_sys_ioctl fs/ioctl.c:583 [inline]<br /> __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583<br /> do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]<br /> do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94<br /> entry_SYSCALL_64_after_hwframe+0x77/0x7f<br /> RIP: 0033:0x7f164cf8f749<br /> Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48<br /> RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010<br /> RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749<br /> RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003<br /> RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000<br /> R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000<br /> R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288<br /> <br /> <br /> Allocated by task 9593:<br /> kasan_save_stack+0x33/0x60 mm/kasan/common.c:56<br /> kasan_save_track+0x14/0x30 mm/kasan/common.c:77<br /> poison_kmalloc_redzone mm/kasan/common.c:397 [inline]<br /> __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414<br /> kmalloc_noprof include/linux/slab.h:957 [inline]<br /> kzalloc_noprof include/linux/slab.h:1094 [inline]<br /> ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120<br /> inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050<br /> addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160<br /> inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580<br /> sock_do_ioctl+0x118/0x280 net/socket.c:1254<br /> sock_ioctl+0x227/0x6b0 net/socket.c:1375<br /> vfs_ioctl fs/ioctl.c:51 [inline]<br /> __do_sys_ioctl fs/ioctl.c:597 [inline]<br /> __se_sys_ioctl fs/ioctl.c:583 [inline]<br /> __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583<br /> do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]<br /> do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94<br /> entry_SYSCALL_64_after_hwframe+0x77/0x7f<br /> <br /> Freed by task 6099:<br /> kasan_save_stack+0x33/0x60 mm/kasan/common.c:56<br /> kasan_save_track+0x14/0x30 mm/kasan/common.c:77<br /> kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584<br /> poison_slab_object mm/kasan/common.c:252 [inline]<br /> __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284<br /> kasan_slab_free include/linux/kasan.h:234 [inline]<br /> slab_free_hook mm/slub.c:2540 [inline]<br /> slab_free_freelist_hook mm/slub.c:2569 [inline]<br /> slab_free_bulk mm/slub.c:6696 [inline]<br /> kmem_cache_free_bulk mm/slub.c:7383 [inline]<br /> kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362<br /> kfree_bulk include/linux/slab.h:830 [inline]<br /> kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523<br /> kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline]<br /> kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801<br /> process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257<br /> process_scheduled_works kernel/workqu<br /> ---truncated---
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026

CVE-2026-23011

Fecha de publicación:
25/01/2026
Idioma:
Inglés
*** Pendiente de traducción *** In the Linux kernel, the following vulnerability has been resolved:<br /> <br /> ipv4: ip_gre: make ipgre_header() robust<br /> <br /> Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust")<br /> <br /> Over the years, syzbot found many ways to crash the kernel<br /> in ipgre_header() [1].<br /> <br /> This involves team or bonding drivers ability to dynamically<br /> change their dev-&gt;needed_headroom and/or dev-&gt;hard_header_len<br /> <br /> In this particular crash mld_newpack() allocated an skb<br /> with a too small reserve/headroom, and by the time mld_sendpack()<br /> was called, syzbot managed to attach an ipgre device.<br /> <br /> [1]<br /> skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0<br /> kernel BUG at net/core/skbuff.c:213 !<br /> Oops: invalid opcode: 0000 [#1] SMP KASAN PTI<br /> CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full)<br /> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025<br /> Workqueue: mld mld_ifc_work<br /> RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213<br /> Call Trace:<br /> <br /> skb_under_panic net/core/skbuff.c:223 [inline]<br /> skb_push+0xc3/0xe0 net/core/skbuff.c:2641<br /> ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897<br /> dev_hard_header include/linux/netdevice.h:3436 [inline]<br /> neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618<br /> NF_HOOK_COND include/linux/netfilter.h:307 [inline]<br /> ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247<br /> NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318<br /> mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855<br /> mld_send_cr net/ipv6/mcast.c:2154 [inline]<br /> mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693<br /> process_one_work kernel/workqueue.c:3257 [inline]<br /> process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340<br /> worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421<br /> kthread+0x711/0x8a0 kernel/kthread.c:463<br /> ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158<br /> ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
Gravedad: Pendiente de análisis
Última modificación:
25/01/2026